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ABSTRACT

We examine the distinctive feature [voice] that separates the
voiced from the unvoiced sounds for the case of stop consonants.
We conduct acoustic-phonetic analyses on a large database and
demonstrate the superior separability using a temporal measure
(voice onset time; VOT) rather than spectral measures. We de-
scribe several algorithms to estimate the VOT automatically from
continuous speech and compare them on a speech recognition
problem to reduce error rates by as much as 53 % over a base-
line HMM based system.

1. INTRODUCTION

In this paper, we describe steps towards a distinctive feature based
approach to speech recognition. In order to progress towards this
goal, we need to better understand (1) the acoustic cues for such
distinctive features (2) the reliability and separability of such cues
particularly in comparison with the traditional acoustic represen-
tations such as cepstra (3) the mechanisms by which these cues
can be automatically extracted and incorporated in an automatic
speech recognition (ASR) system. Here, we resolve these issues
for the case of the voicing feature for stop consonants. We focus
on this feature partly because current ASR systems typically have
greater error rates for these sounds.

Although the voicing feature for stop consonants manifests itself
in complicated and context dependent ways, it has been observed
in the phoneticsliterature [1] that an important cue consists of the
voice onset time (VOT) that separates voiced stops from unvoiced
stops, particularly in syllable-initial position. In recent work [6],
we have incorporated VOT in an ASR system based on HMMs
providing significant reduction in error rate along the voicing di-
mension. Here we expand on the theme of VOT and its use in
speech recognition in a number of different ways.

While it is known that the VOT provides good separation between
voiced and unvoiced stops, it is not known whether it provides bet-
ter separation than the features traditionally used in ASR such as
LPC-spectra or cepstra. Here we extend acoustic-phonetic anal-
yses to multiple speakers on the TIMIT database demonstrating
that the VOT is indeed much better than spectral separation, i.e.,
the cue to the voiced/unvoiced distinction is primarily a temporal
rather than a spectral one.

In this paper, we also consider several alternative algorithms to
estimate the VOTautomatically. We describe the several versions
of the VOT estimates, examine the accuracy of such estimates on
unsegmented speech, and compare their performance on an ASR
task. The best VOT estimation algorithm can reduce the error rate
for the voiced/unvoiced distinction by as much as 53 % over a
traditional HMM based system.

# P T K B D A E
P 1104 759 95 31 14 10 1 1
T 2893 198 1782 42 0 42 4 4
K 1244 14 71 1024 0 1 2 0
B 1163 173 76 8 521 69 1 13
D 1804 72 304 13 37 1006 0 0
A 4361 44 128 850 12 12 1554 48
E 5548 236 975 52 35 231 24 968

Table 1: Confusion Matrix with(i; j) element containing the
number ofi ! j confusions. The total number of letters in the
database is provided in column 1.

2. STOP CONSONANTS IN ALPHABET
RECOGNITION

To ground our investigations in a concrete ASR problem, we con-
sider a continuously spoken alphabet recognition task. This con-
sists of recognizing spelled letters of New Jersey townnames con-
tinuously spoken by a hundred different speakers (50 utterances
each; 5000 utterances in all) and collected over a telephone chan-
nel.

Our baseline system is an HMM based recognizer using 41 con-
text independent phones. All phones were modeled by a three
state, left to right HMM, except for silence which was modeled
by a single state HMM. Models were trained using discrimina-
tive minimum classification error training on an inhouse general
phrase and personal names database collected over the telephone
[5]. Features used are energy and twelve cepstral coefficients
(along with delta, and delta-delta values for these) computed ev-
ery 10 ms using a 30 ms window. We focus in particular on letters
containing stop consonants. Shown in table 1 is a subset of the
overall confusion matrix for all alphabets that includes only the
letters containing the stops and their confusions along the voicing
dimension. We have included “E” and “A” here since confusion
between stops and these letters is very high and are related par-
tially to poor detection of a burst by our baseline system.

3. TEMPORAL VERSUS SPECTRAL
CUES FOR STOPS

In this section, we provide evidence that a temporal measure like
the VOT provides better separation along the voicing dimension
for stops than typical spectral measures that are used in standard
HMM based speech recognition systems.

3.1. Temporal Separability

To begin, let us consider a single speaker. Approximately two
hundred “t”s and “d”s in syllable initial, pre-stressed position
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Figure 1: Distributions of VOTs for “t” (solid) and “d” (dotted);
obtained from a single male speaker in several vocalic contexts.
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Figure 2: Distributions of VOTs for “t” and “d” in syllable-initial
pre-stressed position extracted from the TIMIT database.

were extracted by hand from an inhouse database consisting of
2000 phonetically balanced sentences produced by a single male
speaker (the KBB database). Shown in fig. 1 are the distributions
of these VOTs and note the almost perfect separation found be-
tween “t”s and “d”s for this speaker.

Similar results exist for other minimal pairs as well (“p”/“b” and
“k”/“g”). Do these results generalize to the multiple speaker case?
Shown in fig. 2 are the distributions of VOTs for stops in sylla-
ble initial position extracted from the 630 speakers of the TIMIT
database. By performing a textual analysis on the various sen-
tences in the TIMIT database, only those stops that occured in
syllable-initial, prestressed position were considered. This is a
significantly larger number of speakers than has been considered
before in similar acoustic-phonetic studies.

Again, similar results exist for the other stop minimal pairs and we
do not report the figures here for lack of space. Our results here
are consistent with previous observations [8, 4, 1] — (1) VOT val-

ues are larger for unvoiced stops than voiced; (2) VOT values vary
according to place of articulation with labials having the smallest
and velars having the largest; (3) separability is greatest and most
reliable when the stops occur before stressed vowels and is less in
other contexts.

3.2. Spectral Separability

The previous section merely reconfirms well known results in the
acoustic-phonetic community that demonstrate large separability
using VOT as an acoustic cue. Here we address an important
question that has been inadequately treated in the past — how do
the same sounds separate in the spectral domain and is there any
competitive advantage to using temporal over spectral measures?
This is a trickier question to answer since it is difficult to com-
pare across different distance metrics defined on different spec-
tral spaces of different dimensionalites. One way to get around
this is by constructing probability models in the different feature
spaces and using a likelihood ratio discriminability measure for
voiced/unvoiced pairs as follows: For anyx, define

d(x) = log(
P (xj�u)

P (xj�v))

whereP (xj�u) is the likelihood of an arbitrary pointx in the
feature space, given the probability model for a particular un-
voiced stop (like “p”,“t”, or “k”) constructed in that feature space
(likewiseP (xj�v) is the model for the voiced counter part, i.e.,
“b”,“d”and “g”). Clearly, for example,d(x) is large for points
more likely to be generated by the model for “t” (likewise, small
for “d”). Thus,d(x) is now a dimensionless quantity whose dis-
tributions characterize separability for arbitrary featuresx:Shown
in fig. 3 are the distributions ofd(x) for “t” and “d” tokens ex-
tracted from the KBB database. One set of curves is obtained
by constructing models in the VOT space; the other set of curves
is obtained by constructing models in a spectral space. The spec-
tral representation consisted of filter bank outputs (logarithmically
spaced) computed every millisecond. A principal components
rotation was performed for orthogonalization and dimensionality
reduction and Gaussian probability models (diagonal covariance
matrix) were then constructed in the rotated space. Notice the sig-
nificantly superior separability of the models developed using the
VOT as a criterion.

Again, we need to see if this fact generalizes to the multispeaker
case. Fig. 4 shows the separability between “t” and “d” using data
collected from the TIMIT database (velar and labial show similar
characteristics but have not been included for lack of space). The
VOT separability curves were obtained by constructing probabil-
ity models using the data shown in the previous section. The spec-
tral representation for the TIMIT speakers consisted of the first
twelve cepstral coefficients obtained from 30 ms. windows moved
at a 10 ms. rate in the burst region of the respective stops. This
is the traditional basis for the acoustic representation for speech
in many speech recognizers including versions that have existed
at Bell Laboratories. Once again, the same pattern unfolds. The
separability in the VOT space is considerably larger than the sep-
arability in the cepstral space. One begins to notice now the con-
siderable overlap between the voiced and unvoiced stops in the
cepstral space. This results in high error rates along the voicing
dimension for most tasks including the spoken letter recognition
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Figure 3: Separability of “t” from “d” using probability mod-
els constructed from spectral (solid) and VOT (dotted) measures.
(Single Speaker; KBB).

task considered in this paper.

4. AUTOMATIC VOT ESTIMATION

How do we automatically extract estimates of the VOT? We de-
scribe below 3 different methods of burst detection that were com-
bined with a pitch tracker to yield an automatic estimate of the
VOT. As we have earlier described in [6], we operate in a two
pass manner. In a first pass using our baseline HMM system, we
obtain a tentative segmentation of the signal yielding candidate
segments where stops are postulated. In each such candidate seg-
ment, we now perform a detailed second pass analysis to locate
estimates of two times:tb (time at which closure-burst transition
occurs) andtv (time at which voicing comes on). Thentv � tb
yields an estimate of VOT.

Estimates oftv are obtained by using a cross-correlation based
pitch tracker with dynamic programming as in [7]. We describe
below 3 different ways of obtaining an estimate oftb: In what
follows, we lets(t) be the speech samples, and correspondingly
let Et(n) be the total power (in dB) computed every 1 ms and
Eh(n) be the total power above 3 kHz (in dB) computed every 1
ms respectively. Therefore,tb is in units of milliseconds from the
start of the segment.

Algorithm 1: Optimized Differential Energy Operator. Here
tb = arg maxn Et(n) � h(n): The linear filterh(n) satisfies
h(n) = 08n > 10: The coefficients of the filter are estimated
from training data using LMS training.

Algorithm 2: Optimized Linear Operator (Total Energy and H.F.
Energy). Heretb = argmaxn(E(n) � h1)

2 + (Eh(n) � h2)
2:

Both h1 andh2 are filters satisfyinghi(n) = 08n > 10: Their
parameters are jointly estimated from training data using LMS
training.

Algorithm 3: State Dependent Energy based Detector. Define
state-variabless(n) andf(n) taking values inf0; 1g: Initialize
f(n) = 1 ands(n) = 0 for all n:
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Figure 4: Separability of “t” from “d” using probability mod-
els constructed from spectral (solid) and VOT (dotted) measures
(Multiple Speaker; TIMIT).

for eachn:
if f(n)s(n) = 0&Et(n) > th1 s(k) = 18k � n;
if f(n)s(n) = 1&Et(n) < th2 s(k) = 08k;

if f(n)s(n) = 1&Et(n) > th3 f(k) = 08k > n;

end
Finally, we lettb = argmaxn s(n)� s(n� 1): In this algorithm
the thresholdsth1; th2; th3 are chosen from training data.

In the next section, we compare recognition results obtained by
utilizing the above VOT estimation algorithms as a second pass to
correct errors along the voicing dimension for letters. As we shall
see then,Algorithm 3provides the best results in our recognition
experiments. Of course, in the use of the VOT estimation algo-
rithms in the two pass mode of section 5, it often happens that the
postulated stop segment was misrecognized as such by the first
pass. To get a sense of how well the VOT estimation algorithm
would perform in the ideal case with a relatively error free first
pass, we obtained an HMM segmentation by aligning the speech
signal with a known transcription via HMM models for each of
the phonemes. The distributions of the VOTs obtained by apply-
ing Algorithm 3is shown in fig. 5.

Notice the trimodal distribution of the VOTs. The outer modes
correspond to gross under and over estimates, i.e., negative or
unreasonably high VOT estimates. This occurs about 20 % of
the time suggesting that the VOT estimation algorithm provides a
reasonably accurate estimate about 80 % of the time when used
with an accurate first pass system. In the next section, we present
recognition results when the VOT algorithms are used with our
baseline HMM as a first pass on test sentences.

5. RECOGNITION EXPERIMENTS

We have developed a two pass framework for recognition. In the
first pass, the baseline HMM recognizer, described in section 2,
provides an initial recognition that is further refined using alter-
nate features and classifiers. The second pass features and classi-
fiers are appropriately tuned to specific sound classes and aim to
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Figure 5: Distributions of VOTs for “t” (dotted) and “d” (solid).
Obtained by running the second pass VOT extraction algorithm
on a first pass that corresponds to a forced alignment of the HMM
models with the true identity.

reduce the errors made by the HMM. Most significantly, the sec-
ond pass strategy allows for class-specific processing of temporal
and spectral information in a more flexible manner.

As a first step, we have implemented such a strategy for alpha-
bet recognition with a second pass correcting only the confusions
shown in table 1 . Due to the asymmetry in the confusion pair
statistics, i.e., voiced! unvoiced confusions are considerably
higher than the other way around, we targeted only those seg-
ments that were classified as an unvoiced stop by the baseline
HMM. Thus segments classified as “T”,“P” or “K” were reana-
lyzed. The second pass obtained VOT estimates using each of
the three algorithms described earlier. Using the VOT estimates,
the “T” was reclassified as a “T” only if VOT was greater than
40 ms (“D” if less than 40 but greater than 2 and “E” otherwise);
“P” was reclassified as a “B” only if VOT was greater than 30 ms
(“B” if less than 30 but greater than 2 ms; “E” otherwise); “K”
was reclassified as “K” only if VOT was greater than 50 ms (“A”
otherwise).

Notice that by reclassifying in the manner described above, we
change only the subset of the confusion matrix displayed in ta-
ble 1. Furthermore, for our purposes, since we are targeting only
those features related to the burst and voicing, it is meaningful
to consider only confusions between the three separate classes
of sounds — unvoiced stops (fP,T,Kg); voiced stopsfB,Dg; and
vowelsfA,Eg. Table 5. shows the new confusions between these
classes.

We see that all the automatic reclassification algorithms reduce
the error rate along the voicing dimension by a significant amount
(Algorithms 1, 2 and 3 by 18%, 19%, and 53% respectively.
Clearly, algorithm 3 is vastly superior to all others in its perfor-
mance. It should be pointed out, though, that algorithms 1 and 2
were designed for burst detection without a first pass while algo-
rithm 3 was specially designed for our purposes.

fP,T,Kg fB, Dg fA,Eg
fP,T,Kg 67(b) ; 284(1) 12(b); 377(1)

120(3); 286(2) 106(3); 407(2)
fB,Dg 646(b); 284(1) 14(b); 168(1)

223(3); 286(2) 73(3); 177(2)
fA,Eg 2285(b); 1078(1) 290(b); 511(1)

1008(3); 1072(2) 603(3); 475(2)

Table 2: Number of confusions between broad classes of alpha-
bets separated by burst and voicing. The numbers in brackets in-
dicate type of algorithm used: (b) baseline, and (1),(2),(3) are Al-
gorithms 1,2,3 in second pass mode. Baseline and best algorithms
are shown in bold.

6. CONCLUSIONS

We have investigated the possibility of using acoustic-phonetic
features for recognition in a two pass manner. In particular, we
have focused on the voiced/voiceless distinction between stop
consonants in the context of an alphabet recognition task.

We have described our acoustic-phonetic studies that demonstrate
that the VOT serves as a stronger dimension of separability than
traditional spectral measures like energy banks or cepstra. We
have described several different algorithms for automatically ex-
tracting the VOT and their use in a continuous speech recognition
system. We have compared these algorithms and shown that all of
them help improve recognitionaccuracy and the best among them
decreases error rates by as much as 53 percent.
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