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ABSTRACT # [P T [ K[BJ]D
P | 1104 | 759 95 31 14 10
We examine the distinctive feature [voice] that separates theT | 2893 | 198 | 1782 | 42 0 42
voiced from the unvoiced sounds for the case of stop consonantx | 1244 | 14 71 1024 0O 1
We conduct acoustic-phonetic analyses on a large database amsl | 1163 | 173 | 76 8 521 | 69
demonstrate the superior separability using a temporal measirg | 1804 | 72 | 304 13 37 | 1006
(voice onset timeVOT) rather than spectral measures. We deF o | 4361 | 44 | 128 | 850 | 12 12 | 1554
scribe several algorithms to estimate the VOT automatically frofmg | 5528 236 | 975 | 52 35 | 231 | 24 | 968
continuous speech and compare them on a speech iigoagn
problem to reduce error rates by as much as 53 % over a basgmle 1: Confusion Matrix with(z, j) element containing the
line HMM based system. number ofi — j confusions. The total number of letters in the

database is provided in column 1.
1. INTRODUCTION

In this paper, we describe steps towards a distinctive feature based, STOP CONSONANTS IN ALPHABET
approach to speech recation. In order to progress towards this RECOGNITION

goal, we need to better understand (1) the acoustic cues for such

distinctive features (2) the reliability and separability of such cueg, ground our investigations in a concrete ASR problem, we con-
pa_rticularly in comparison with the traditi_onal acous_tic represensiger a continuously spoken alphabet redtgn task. This con-
tations such as cepstra (3) the mechanisms by which these cWg§s of recognizing spelled letters of New Jersey townnames con-
can be automatically extracted and incorporated in an amomaﬂﬁuously spoken by a hundred different speakers (50 utterances

speech recogtion (ASR) system. Here, we resolve these issuegach: 5000 utterances in all) and collected over a telephone chan-
for the case of the voicing feature for stop consonants. We focys,

on this feature partly because current ASR systems typically have -

greater error rates for these sounds. Our baseline system is an HMM based recognizer using 41 con-
L . . text independent phones. All phones were modeled by a three

Although the voicing feature for stop consonants manifests 'tseéftate, left to right HMM, except for silence which was modeled

in complicated and context dependentways, it has been obseryad, single state HMM. Models were trained using discrimina-

in the phonetictiterature [1] that an important cue consists of thee minimum classification error training on an inhouse general

voice onsettime (VOT) that separates voiced stops from unvoiceghase and personal names database collected over the telephone

stops, pan_'ncularly in syllable_-lnltlal position. lrecent work [6], [5]. Features used are energy and twelve cepstral coefficients

we have incorporated VOT in an ASR system based on HMM, 5 with delta, and delta-delta values for these) computed ev-

prowd_lng significant reduction in error rate along the voicing dl-_ery 10 ms using a 30 ms window. We focus in particular on letters

mension. Here we expand on the theme of VOT and its USe {,ntaining stop consonants. Shown in table 1 is a subset of the

speech recogtion in a number of different ways. overall confusion matrix for all alphabets that includes only the

While it is known that the VOT provides good separation betweele.tters c_onta\llr\}ln% the §toFs darédehF" € dOP:,Ji'ons "’?'0”9 the fv0|_cmg

voiced and unvoiced stops, it is not known whether it provides beggnt\sgzlr?giop: anegl/fhlggeule?ters isa\r/]er higﬁrznsén;f; Crcé?ar:éogar-

ter separation than the features traditionally used in ASR such B3 ¢ r detection of a burst b r{) in i

LPC-spectra or cepstra. Here we extend acoustic-phonetic ana'f'f’£ Y 1o poor detection ot a burst by ourbaseline system.

yses to multiple speakers on the TIMIT database demonstrating

that the VOT is indeed much better than spectral separation, i.e., 3. TEMPORAL VERSUS SPECTRAL

the cue to the voiced/unvoiced distinction is primarily a temporal CUES FOR STOPS

rather than a spectral one.
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In this section, we provide evidence that a temporal measure like
In this paper, we also consider several alternative algorithms tbe VOT provides better separation along the voicing dimension
estimate the VORutomatically We describe the several versionsfor stops than typical spectral measures that are used in standard
of the VOT estimates, examine the accuracy of such estimates biMM based speech recoijion systems.
unsegmented speech, and compare their performance on an ASR
task. The best VOT estimation algorithm can reduce the error rai.1.  Temporal Separability

for the voiced/unvoiced distinction by as much as 53 % over a _ _
traditional HMM based system. To begin, let us consider a single speaker. Approximately two

hundred “t’s and “d”s in syllable itial, pre-stressed position



ues are larger for unvoiced stops than voiced; (2) VOT values vary
- according to place of articulation with labials having the smallest
and velars having the largest; (3) separability is greatest and most
reliable when the stops occur before stressed vowels and is less in
other contexts.
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. 3.2. Spectral Separability

03

Proportion of Tokens

The previous section merely reconfirms well known results in the
acoustic-phonetic community that demonstrate large segtigrab
using VOT as an acoustic cue. Here we address an important
2 question that has been inadequately treated in the past— how do
the same sounds separate in the spectral domain and is there any
competitive advantage to using temporal over spectral measures?
‘ ‘ ‘ ‘ ‘ ‘ This is a trickier question to answer since it is difficult to com-
° . T e - - pare across different distance metrics defined on different spec-
tral spaces of different dimensiditas. One way to get aund
Figure 1: Distributions of VOTS for “t” (solid) and “d” (dotted); S S PY constructing probability models in the different feature
spaces and using a likelihood ratio discrimiitigo measure for

obtained from a single male speaker in several vocalic contexts; . . ! )
9 P voiced/unvoiced pairs as follows: For anydefine

P(z]|Au)
wl o ) =108 Bl
where P(z|A.) is the likelihood of an arbitrary point in the
feature space, given the proligp model for a particular un-
voiced stop (like “p”,“t”, or “k”) constructed in that feature space
(likewise P(z|A,) is the model for the voiced counter part, i.e.,
“b”,“d"and “g”). Clearly, for example,d(z) is large for points
more likely to be generated by the model for “t” (likewise, small
for “d”). Thus, d(z) is now a dimensionless quantity whose dis-
tributions characterize separability for arbitrary featureShown
0.02f in fig. 3 are the distributions af(z) for “t” and “d” tokens ex-
tracted from the KBB database. One set of curves is obtained
0.01r by constructing models in the VOT space; the other set of curves
is obtained by constructing models in a spectral space. The spec-
Ch— 2% 0 s s 00 120 0 tral representation consisted of filter bank outputs (logarithmically
Voice Onset Time spaced) computed everyilisecond. A principal components
rotation was performed for orthogonalization and dimenditna
Figure 2: Distributions of VOTs for “t” and “d” in syllable-initial  aqyction and Gaussian probability models gdiaal covariance
pre-stressed position extracted from the TIMIT database. matrix) were then constructed in the rotated space. Notice the sig-
nificantly superior separability of the models developed using the
were extracted by hand from an inhouse database consisting\4PT as a criterion.
2000 phonetically balanced sentences produced by a single male | o . .
speaker (the KBB database). Shown in fig. 1 are the distributio gain, we need to see if this fact generalizes to the multispeaker

of these VOTs and note the almost perfect separation found pedse. Fig. 4 shows the separability between *t ar_ld “ar using o_Iata
tween “t's and “ds for this speaker. collected from the TIMIT database (velar and labial show similar

characteristics but have not been included for lack of space). The
Similar results exist for other minimal pairs as well (“p”/“b” and VOT separability curves were obtained by constructing probabil-
“k[“g"). Do these results generalize to the multiple speaker casdy models using the data shown in the previous section. The spec-
Shown in fig. 2 are the distributions of VOTSs for stops in sylla-tral representation for the TIMIT speakers consisted of the first
ble initial position extracted from the 630 speakers of the TIMITWelve cepstral coefficients obtained from 30 ms. windows moved
database. By performing a textual analysis on the various seft @ 10 ms. rate in the burst region of the respective stops. This
tences in the TIMIT database, only those stops that occured i the traditional basis for the acoustic representation for speech
syllable-initial, prestressed position were considered. This is i many speech recognizers including versions that have existed
significantly larger number of speakers than has been conside@dBell Laboratories. Once again, the same pattern unfolds. The
before in similar acoustic-phonetic studies. separability in the VOT space is considerably larger than the sep-

arability in the cepstral gie. One begins to notice now the con-
Again, similar results exist for the other stop minimal pairs and wsiderable overlap between the voiced and unvoiced stops in the
do not report the figures here for lack of space. Our results heoepstral space. This results in high error rates along the voicing
are consistentwith previous observations [8, 4, 1] — (1) VOT valdimension for most tasks including the spoken letter reitmymn

0.06 Cut off=40.127893

Probability Density
o o

o o

B o

T T

o

o

)
T




015
|
008 010
| |

006
|

Probability Density

0.04
|

002
|

T T T T T T T T T T T T T
-20 o 20 a0 60 80 -20 o 20 a0 60 80 100

Likelihood Score Likelihood Score

Figure 3: Separability of “t” from “d” using probability mod- Figure 4: Separability of “t” from “d” using probability mod-
els constructed from spectral (solid) and VOT (dotted) measuresls constructed from spectral (solid) and VOT (dotted) measures

(Single Speaker; KBB). (Multiple Speaker; TIMIT).
task considered in this paper. for eachn:
if  f(n)s(n) = 0&Ei(n) > thl s(k) = 1Yk > n;
4. AUTOMATIC VOT ESTIMATION if - f(n)s(n) =1&E(n) < th2  s(k) = 0Vk;

if  f(n)s(n) =1&Ei(n) > th3 f(k) = OVk > n;
How do we automatically extract estimates of the VOT? We de-
scribe below 3 different methods of burst detection that were com@_nd ) )
bined with a pitch tracker to yield an automatic estimate of th&nally, we lett, = arg max, s(n) —s(n —1). In this algorithm
VOT. As we have earlier described in [6], we operate in a twd€ thresholdsh1, th2, th3 are chosen from training data.

ass manner. In a first pass using our baseline HMM system, we . . .
P P 9 y n the next section, we compare recognition results obtained by

obtain a tentative segmentation of the signal yielding candidate.,. . L .
. utilizing the above VOT estimation algorithms as a second pass to
segments where stops are postulated. In each such candidate seg- L . .
rect errors along the voicing dimension for letters. As we shall

ment, we now perform a detailed second pass analysis to locatd . ) . -
estimates of two timeg;, (time at which closure-burst transition see thenAlgorithm 3provides the best results in our recognition

- . - experiments. Of course, in the use of the VOT estimation algo-
occurs) and, (time at which voicing comes on). Then — ¢, . . i )
. : rithms in the two pass mode of section 5, it often happens that the
yields an estimate of VOT. i ) :
postulated stop segment was misrecognized as such by the first

Estimates of, are obtained by using a cross-correlation baseB2ss. To geta sense of how well the VOT estimation algorithm
pitch tracker with dynamic programming as in [7]. We describ&vould pen‘orm_ in the ideal case with a relatlvel_y error free first
below 3 different ways of obtaining an estimatetof In what ~ Pass, we obtained an HMM segmentation by aligning the speech
follows, we lets(t) be the speech samples, and corresponding§gnal with a known transcription via HMM models for each of
let E¢(n) be the total power (in dB) computed every 1 ms and"€ Phonemes. The distributions of the VOTs obtained by apply-
En(n) be the total power above 3 kHz (in dB) computed every N9 Algorithm 3is shown in fig. S.

ms respectively. Therefore, is in units of millise@nds from the

start of the segment. Notice the trimodal distribution of the VOTs. The outer modes

correspond to gross under and over estimates, i.e., negative or

Algorithm 1: Optimized Differential Energy Operator. Here Unréasonably high VOT estimates. This occurs about 20 % of

t, = argmax, Ei(n) * h(n). The linear filterh(n) satisfies the time suggesting that the VOT estimation algorithm provides a

h(n) = 0¥n > 10. The coefficients of the filter are estimated '¢@sonably accurate estimate about 80 % of the time when used

from training data using LMS training. with an accurate first pass system. In the next section, we present
recognition results when the VOT algorithms are used with our

Algorithm 2: Optimized Linear Operator (Total Energy and H.F.baseline HMM as a first pass on test sentences.

Energy). Here, = arg maxn(E(n) * h1)2 + (En(n) * h2)2.

Both h; andh. are filters satisfyingi:(n) = 0¥n > 10. Their 5. RECOGNITION EXPERIMENTS

parameters are jointly estimated from training data using LMS
training. We have developed a two pass framework for recognition. In the

first pass, the baseline HMM recognizer, described in section 2,
Algorithm 3: State Dependent Energy based Detector. Defingrovides an initial recgnition that is further refined using alter-
state-variables(n) and f(n) taking values in{0,1}. Initialize  nate features and classifiers. The second pass features and classi-
f(n) =1ands(n) = 0 for all n. fiers are appropriately tuned to specific sound classes and aim to



{P,T,K} {B, D} {A,E}

{(PTK} 67(b) ; 284(1) | 12(b); 377(1)

120(3); 286(2) | 10§3); 407(2)

s {B.D} | 646b); 284(1) 14(b); 168(1)
= 2233); 286(2) 733); 177(2)

{AE} | 2285Db); 1078(1)| 290(b); 511(1)
10093); 1072(2) | 6033); 475(2)

0010
|

Table 2: Number of confusions between broad classes of alpha-
bets separated by burst and voicing. The numbers in brackets in-
dicate type of algorithm used: (b) baseline, and (1),(2),(3) are Al-
gorithms 1,2,3 in second pass mode. Baseline and best algorithms
are shown in bold.
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e 6. CONCLUSIONS
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We have investigated the possibility of using acouptionetic
Figure 5: Distributions of VOTSs for “t” (dotted) and “d” (solid). features for recognition in a two pass manner. In particular, we
Obtained by running the second pass VOT extraction algorithfd@ve focused on the voiced/voiceless distinction between stop
on afirst pass that corresponds to a forced alignment of the HMRPNSonants in the context of an alphabet recognition task.

models with the true identity.
Y We have described our acoustic-phonetic studies that demonstrate

that the VOT serves as a stronger dimension of seiyahan
traditional spectral measures like energy banks or cepstra. We

o have described several different algorithms for automatically ex-
reduce the errors made by the HMM. Most significantly, the SeGgacting the VOT and their use in a continuous speech retiogn

ond pass strategy allows for class-specific processing of ttmpo@Jsiem. we have compared these algorithms and shown that all of
and spectral information in a more flexible manner. them help improve recogniticaccuracy and the best among them

As a first step, we have implemented such a strategy for alphgt_acreases error rates by as much as 53 percent.
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