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ABSTRACT for a combined system using both representations. In the fol-
lowing we will first describe the baseline recognition systems.

Robust speech recognition under varying acoustic conditionsection 3 presents an error analysis of initial recognition results;
may be achieved by exploiting multiple sources of informatiorsection 4 discusses various classifier combination schemes and
in the speech signal. In addition to an acoustic signal representgord recognition results using a combined system.
tion, we use an articulatory representation consisting of pseudo-
articulatory features as an additional information source. Hybrid2 ~ BASELINE SYSTEMS AND SPEECH
ANN/HMM recognizers using either of these representations are MATERIAL
evaluated on a continuous numbers recognition task (OGI Num-
bers95) under clean, reverberant and noisy conditions. An e
ror analysis of preliminary recognition results shows that th;'l' SpeeCh Corpus

different representations produce qualitatively different errorsrraining and recognition were carried out on the OGI Num-

which suggests a combination of both representations. We in- . ; -
. ; S o ers95 corpus [1], which consists of continuously spoken num-
vestigate various combination possibilities at the phoneme esi-

mation level and show that significant improvements can beep. recorded over both analogue and digital telephone lines
. gr !mp &om a broad set of speakers. The results reported here were
achieved under all three acoustic conditions.

obtained on the “core-subset”. The training set consists of 3590
1 INTRODUCTION utterances, 347 of which were used for cross-validation during
: MLP training. The test set consists of 1206 utterances. The

-, recognition lexicon contains 34 words. Six different test sets re-
Whereas most speech recognition systems use a cepstral or SR

tral representation of the speech signal, there have also be(f%ctlng three acoustic conditions were used. The firstis the clean

attempts at using articulatory information. This includes paEeSt set. The second te_st set IS a digitally reverberated version
. . . . of the clean test set, using an impulse response measured in an
rameters derived from actually observed articulatory trajectories

[12, 15], as well as heuristically defined articulatory features?ChOIC room (0.5 seconds reverberation time). Finally, four test

which are inferred from the speech signal using statistical classsi-Gt$ were generateql by a(_jdmg pink noise to the clean test set at
. . .various signal-to-noise ratios: 30 dB, 20 dB, 10 dB, and O dB.
fiers [3, 2, 4]. These attempts have been motivated by two major

assumptions: first, coarticulation can be modelled more easilye'2 2 A tic B line Svst
the production-based domain than in the acoustic domain. Set-<" coustic baseline systems

ond, it is assumed that articulatory parameters are more I’Obl}%li systems used for the experiments reported in this paper are

towards cross-speaker variation and signal distortions such as %ybrid ANN/HMM recognizers using 29 context-independent

o_Imve NOISE. Athird assumpnon_ can be made, namely that acou hones. Phone probabilities are estimated by three-layer MLPs
tic and articulatory representations of speech are mutually com-

lementary information sources whose combination in a spee uhsing online error back propagation and the softmax activation
p nary . i PeeEinction. Systems vary with respect to the acoustic preprocess-
recognition system might be beneficial.

ing and the size of the hidden layers. All systems use the same

Previously, articulatory-based speech recognizers have primarf2ck-Cff bigram and the same recognition lexicon. It should be
been developed for clean speech: the potential of an articulatoRp'€d: owever, that the recognition lexicon was developed for
representation of the speech signal for noisy test conditions, H{/€ acoustic baseline systems and was not optimized for the ar-
contrast, has not been explored. Moreover, there have baretf?matory systems. All systems were trained iteratively; at each
been attempts at systematically combining articulatory recogiieP training labels were re-generated from a forced alignment
nizers with standard acoustic recognizers. This paper invesfi the Previously trained models with the speech files.

gates the second and third of the above assumptions by repo.|'.t-
ing speech recognition experiments on a variety of acoustic tes¥v
conditions (clean, reverberant, and additive pink noise) for indi-

vidual acoustic and articulatory speech recognizers, as well as “Clean” means that no artificial noise was added. However, this test
set does contain natural background noises.

0 acoustic baseline systems were employed for the experi-




| Feature Group] Features | System | WER [ INS | DEL | SUB |

\oicing +voice, -voice, silence clean AC 8.4 2.0 1.7 4.7
Manner stop, vowel, fricative, approximant clean AF 8.9 15 2.0 5.4
nasal, lateral, silence reverb AC 221 | 1.8 | 59 | 144

Place dental, labial, coronal, palatal, reverb AF 23.7 31 4.7 16.0

velar, glottal, high, mid, low, silence
Front-Back front, back, nil, silence
Lip Rounding +round, -round, nil, silence

30dB noise AC| 155 | 2.8 2.2 10.5
30dB noise AF| 17.4 | 2.4 3.4 11.6
20dB noise AC| 20.3 | 4.9 2.7 12.7
20dB noise AF| 21.7 | 4.3 3.6 13.9
10dB noise AC| 31.3 | 10.3 | 3.2 17.8
10dB noise AF| 30.0 | 6.1 5.7 18.3

- . . 0dBnoise AC | 50.8 | 18.0 | 4.9 | 27.9
ments reported in this paper: the first system (baseline 1), uses 8 0dBnoise AE | 236 | 71 | 1021 263

log-RASTA-PLP [6] coefficients and their first derivatives, com-

puted every 10 ms with a window of 25 ms. The input to therable 2: Baseline word error rates (in %), AC = acoustic, AF =

MLP consists of nine frames and the hidden layer has 400 unitgrticulatory

Baseline | is used for the clean test set. The second system (base-

line Il) also uses an input window of nine frames and the number

of hidden units (HUs) is 560. The acoustic parameterization con- . . L
. : approximant dentalandfront-back-nilare missing from the re-

sists of 15 modulation spectrogram features [5]. These featur&ijuce d feature set

are derived from a critical-band-like filterbank with subsequen '

computation of normalized amplitude envelopes in each chans . L
nel. These are then filtered to estimate the spectral energyrng" Baseline Recognition Results

r_nodulat_lons betwegn 2 an_d ;6 Hz. This front end deem_pha&_zgables 2 shows the baseline word error rates for clean, rever-
fine-grained phonetic detail like onsets and formant traJectonE%

Table 1: Initial articulatory feature set

d enh wral ch hich hi dqt rant and noisy speech. Results for the acoustic (AC) and the
and enhances spectral changes which rougnly correspond to iculatory feature (AF) system are comparable; the only statis-
syllabic rate of speech. Modulation spectrogram features ha

: . YEaIIy significant differences are those between the bold-printed
been demonstrated to be very robust in noisy and reverberant

. . : imbers. in Table2
vironments [5, 14]. Baseline Il is used for the reverberant an

noisy test sets. 3. ERROR ANALYSIS

2.3. Articulatory Systems Although both systems yield similar word error rates, this is no
indication of their performance at the level of subword unit clas-

For both acoustic baseline systems, corresponding articmatoé}?ication. In order to ascertain whether the different systems

systems were built using a set of heuristically defined articulato%ade different errors at this level, the frame-level phone con-

features describing manner and place of articulation. The entifﬁsion matrices were analyzed. Figures 1 to 3 show graphic

set of features is divided into subsets according to orthogonal arréFresentations of the diagonals of the confusion matrices for

ticulatory d|n_1en5|ons (see Tabl_e 1). For ea_ch s_ubset, a separg} acoustic test sets. These reveal qualitative differences be-
MLP was trained on the acoustic parameterization whose output

units correspond to the articulatory classes in that subset. The
context window varies between 5 and 9 frames; the hidden layer a

sizes ranges from 50 to 100 HUs. These were chosen to maxi- or B —_——
mize the recognition accuracy while minimizing the number of 80 - - [ 1
parameters. The posterior feature probabilities output from eacl® 7 | e - - ,
network are concatenated and passed on to a higher-level integr%— ol | LT ] B = u
tive MLP which maps them to the desired phone probabilities.

This MLP uses a context of 9 frames and has 380 HUs.

50 q

40 = 1

level accura

In order to make the systems comparable in terms of the numbeg

of parameters in the phone estimation network, the initial set of& i |

articulatory features was subject to an information-theoretic fea- 20 i B
ture selection algorithm [9]. This procedure successively elim- 10 [ ] - T || ]
inates irrelevant and/or redundant features from the initial set o T IRRRARRR AR ARER AR AN}

while minimizing the relative entropy between the phoneme dis- d t kdeekels z fthv n |t whhviy iheheyayahacowuwer axhi

tribution given the original feature set and the phoneme distri-
bution resulting from the reduced feature set. Approximation]'ezigure 1: Frame-level phone accuracies, clean speech. Solid

to the true conditional distribution are computed on the trainingneq represent the acoustic system, dashed lines the articulatory
set. In preliminary experiments, this algorithm proved superlogystem_

to principal components analysis and allowed us to reduce thé
initial feature set to 18 features. Voicing features and all silence 2statistical significance is based on a difference of proportions test.
features were eliminated completely; furthermore, the feature®esults at a leveX 0.05 were considered significant.




100 T T T [ System [ FER [ WER ] INS [ DEL [ SUB |

90 | [ clean [2253] 73 [ 12 ] 16 [ 44 ]

ol my [ reverb [ 3025] 20.3 [ 3.6 | 3.1 | 13.6 |
g ol B ] 1= [30dBnoise] 26.71] 15.0 | 2.6 [ 2.1 | 10.3 ]
£ | BN =NERERE [ 20dBnoise] 32.13[ 184 [ 2.8 | 2.8 | 12.7 |
g O - 1 - L] [10dBnoise] 40.96 | 27.9 | 6.2 | 43 | 174 |
§ sof || M ] BRE: [ 0dBnoise | 52.62 | 41.0 | 5.9 | 10.8 | 24.3 |
g F ] ] 4
é © N m Table 3: Frame and word error rates (in %) for combined system,
g % H uBl product rule combination

20 f -~ 4

10 ( ]

0 *1 4. CLASSIFIER COMBINATION

d t kdclclkcls z fthv n lprhg\r’122h\,iy ih eheyayahacowuwer axh#

4.1. Combination Rules

Figure 2: Frame-level phone accuracies, reverberant speech.

Solid lines represent the acoustic system, dashed lines the &d2ssifier combination is widely used in the machine leaming
ticulatory system. community [7, 13] and has more recently been applied to speech

recognition [10, 14]. Since the MLPs outputs can be interpreted

as Bayesian a posteriori probabilities, the phoneme classifiers

in our hybrid systems easily lend themselves to combination
200 by means of standard linear probability combination rules. The
90 | 1 two most widely used combination rules [8] are the product rule
. ™ | and the sum rule. GivelV classifierscs, ...,cy and K classes

w1, -..wrk, the product rule computes

N
_ H [ ] P(wg|z1,..zn) = W H P(wk|zn) (1)

40 H
= wherez,, is the feature vector input to classifierand P(wy) is

the a priori probability for clask. This rule rests on the assump-

1 tion that the input representations given the classes are statisti-
) cally independent and that classes have equal priors. Under the
IRARRRRERRRERT —L assumption of equal priors, the sum rules computes the average

d t kdcltclkels z f thv n | r whhhviy iheheyayahacowuweraxhi# of the classifier output probabilities:
phones

30 H

frame-level accuracy (in %)

20

10

N
Figure 3: Frame-level phone accuracies, averaged over all noisy P(wi|z1, .y TN) = Z (wi|zn) 2)
test sets. Solid lines represent the acoustic system, dashed lines —

the articulatory system.

It has been observed [8] that sum rule combination effects a
tween the articulatory and acoustic recognition systems. In thgampening of estimation errors of the individual classifiers,
RASTA-based systems, consonantal segments, especially voigghereas errors are amplified when outputs are fused by the prod-
less stops and fricatives are classified more accurately in the afet rule. Thus, sum rule combination is potentially more robust
ticulatory systems whereas the acoustic system does better on ¥9noisy input, which might be an advantage in acoustically in-
calic segments. As far as the modulation spectrogram based sggable environments.
tems are concerned, consonants are consistently modelled bet-
ter by the acoustic systems, whereas certain vowels (especialy?2. Combination Recognition Results
/ao,ow,uw,ax/) and silence are better distinguished by the articu-
latory systems. Most of these class-specific differences in recogoth of the above rules have been applied to combination un-
nition accuracy are highly statistically significant. der all acoustic conditions. The frame-level accuracy rates for

the combined output and the corresponding word error rates are
The 0 dB noise test case deserves special attention because hk@fgwvn in Table 3 for the product rule combination scheme and
the articulatory system shows a markedly better performangg Table 4 for sum rule combination.
than the acoustic system. A closer look at the frame-level phone
accuracies showed that the main portion of the error reducFhe word error rates in bold print in Table 3 are significantly
tion in articulatory system was due to a better separation of sbetter than the corresponding best system in Table 2. As far as
lence, voiceless fricatives, and voiceless plosives. Thus, sintiee frame error rate is concerned, the sum rule scheme achieves
the acoustic and articulatory classifiers produce characteristically better result than the product rule combination method in
different errors, it might be beneficial to combine them. noisy (20 dB, 10 dB, and 0 dB SNR) test cases and in the



[ System | FER | WER [ INS | DEL | SUB ]
[ clean [2176] 80 [ 09 ] 23 | 47 ]
[ reverb [ 31.46] 209 | 1.2 | 53 | 144 |
[30dBnoise] 27.08] 159 | 2.1 | 2.9 | 11.0 ]
[ 20dBnoise| 31.96 [ 20.3 | 2.6 | 40 [ 137 ]
[10dBnoise] 40.38] 28.7 | 3.7 | 7.1 | 17.9 ]
[ 0dBnoise | 52.16 | 43.8 | 9.3 | 8.1 | 265 ]

Table 4: Frame and word error rates (in %) for combined system,

sum rule combination
1.

RASTA-based system; these differences are statistically signif-z'
icant. However, the product rule combination scheme always
produces an equivalent or better word error rate.

5. DISCUSSION AND CONCLUSIONS

3.

We have presented an approach to robust processing of speegh
using information from both the acoustic and the articulatory do-
main. Whereas the acoustic systems perform slightly better ir’;5
the case of clean speech and noise at high signal-to-noise ratios;
the articulatory systems show a distinct advantage in the pres-
ence of noise at low signal-to-noise ratios. Furthermore, it was
shown that although individual recognizers based on the differenf-
representations yield similar word error rates, they provide dif-
ferent information at the frame-level. Simultaneous exploitation
of the two information sources by means of a linear combination7.
of the phoneme classifier outputs further improves word recogni-
tion. Obviously, the additional level of pre-phoneme classifica-
tion in terms of articulatory features seems to help identify seg-g
ments which are highly confusable on the basis of the acoustic
representation alone. These findings suggest a novel approach to
the dichotomy between acoustic or perception-based representa-
tions and production-based representations, viz. the combinatioﬁ'
of both in acoustic contexts where they can be shown to provide
different information. It should be possible to eliminate the full
articulatory feature representation of the signal. Instead, individ-
ual articulatory classifiers might be used which target that subs&p.
of the subword classes which receives a poor classification in the
acoustic feature space (cf. also [11]). 11.

Of the two combination rules which we investigated, the sum
rule shows a tendency to achieve better frame-level accurac
rates in the RASTA-based system and in the noisy test casélé,'
which might support previous observations that sum rule combi-
nation is more robust towards estimation errors produced by the
individual classifiers. The product rule, by contrast, achieves a
lower word error rate. This is probably not due to independencé3.
of the input representations; the articulatory representation has
in all cases been derived from the acoustic representation and is
unlikely to be completely independent from it. A more plausible14.
reason is that product rule combination produces phoneme distri-
butions which interact more favourably with the structure of the
word recognition lexicon (pronunciation variants, minimum du-
rations, etc.). This suggests that a combination scheme should
applied which is designed to minimize word-error rate directly.
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