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ABSTRACT

Robust speech recognition under varying acoustic conditions
may be achieved by exploiting multiple sources of information
in the speech signal. In addition to an acoustic signal representa-
tion, we use an articulatory representation consisting of pseudo-
articulatory features as an additional information source. Hybrid
ANN/HMM recognizers using either of these representations are
evaluated on a continuous numbers recognition task (OGI Num-
bers95) under clean, reverberant and noisy conditions. An er-
ror analysis of preliminary recognition results shows that the
different representations produce qualitatively different errors,
which suggests a combination of both representations. We in-
vestigate various combination possibilities at the phoneme esti-
mation level and show that significant improvements can been
achieved under all three acoustic conditions.

1. INTRODUCTION

Whereas most speech recognition systems use a cepstral or spec-
tral representation of the speech signal, there have also been
attempts at using articulatory information. This includes pa-
rameters derived from actually observed articulatory trajectories
[12, 15], as well as heuristically defined articulatory features
which are inferred from the speech signal using statistical classi-
fiers [3, 2, 4]. These attempts have been motivated by two major
assumptions: first, coarticulation can be modelled more easily in
the production-based domain than in the acoustic domain. Sec-
ond, it is assumed that articulatory parameters are more robust
towards cross-speaker variation and signal distortions such as ad-
ditive noise. A third assumption can be made, namely that acous-
tic and articulatory representations of speech are mutually com-
plementary information sources whose combination in a speech
recognition system might be beneficial.

Previously, articulatory-based speech recognizers have primarily
been developed for clean speech; the potential of an articulatory
representation of the speech signal for noisy test conditions, by
contrast, has not been explored. Moreover, there have barely
been attempts at systematically combining articulatory recog-
nizers with standard acoustic recognizers. This paper investi-
gates the second and third of the above assumptions by report-
ing speech recognition experiments on a variety of acoustic test
conditions (clean, reverberant, and additive pink noise) for indi-
vidual acoustic and articulatory speech recognizers, as well as

for a combined system using both representations. In the fol-
lowing we will first describe the baseline recognition systems.
Section 3 presents an error analysis of initial recognition results;
Section 4 discusses various classifier combination schemes and
word recognition results using a combined system.

2. BASELINE SYSTEMS AND SPEECH
MATERIAL

2.1. Speech Corpus

Training and recognition were carried out on the OGI Num-
bers95 corpus [1], which consists of continuously spoken num-
bers recorded over both analogue and digital telephone lines
from a broad set of speakers. The results reported here were
obtained on the “core-subset”. The training set consists of 3590
utterances, 347 of which were used for cross-validation during
MLP training. The test set consists of 1206 utterances. The
recognition lexicon contains 34 words. Six different test sets re-
flecting three acoustic conditions were used. The first is the clean
test set1. The second test set is a digitally reverberated version
of the clean test set, using an impulse response measured in an
echoic room (0.5 seconds reverberation time). Finally, four test
sets were generated by adding pink noise to the clean test set at
various signal-to-noise ratios: 30 dB, 20 dB, 10 dB, and 0 dB.

2.2. Acoustic Baseline Systems

All systems used for the experiments reported in this paper are
hybrid ANN/HMM recognizers using 29 context-independent
phones. Phone probabilities are estimated by three-layer MLPs
using online error back propagation and the softmax activation
function. Systems vary with respect to the acoustic preprocess-
ing and the size of the hidden layers. All systems use the same
back-off bigram and the same recognition lexicon. It should be
noted, however, that the recognition lexicon was developed for
the acoustic baseline systems and was not optimized for the ar-
ticulatory systems. All systems were trained iteratively; at each
step, training labels were re-generated from a forced alignment
of the previously trained models with the speech files.

Two acoustic baseline systems were employed for the experi-

1“Clean” means that no artificial noise was added. However, this test
set does contain natural background noises.



Feature Group Features

Voicing +voice, -voice, silence
Manner stop, vowel, fricative, approximant,

nasal, lateral, silence
Place dental, labial, coronal, palatal,

velar, glottal, high, mid, low, silence
Front-Back front, back, nil, silence

Lip Rounding +round, -round, nil, silence

Table 1: Initial articulatory feature set

ments reported in this paper: the first system (baseline I), uses 8
log-RASTA-PLP [6] coefficients and their first derivatives, com-
puted every 10 ms with a window of 25 ms. The input to the
MLP consists of nine frames and the hidden layer has 400 units.
Baseline I is used for the clean test set. The second system (base-
line II) also uses an input window of nine frames and the number
of hidden units (HUs) is 560. The acoustic parameterization con-
sists of 15 modulation spectrogram features [5]. These features
are derived from a critical-band-like filterbank with subsequent
computation of normalized amplitude envelopes in each chan-
nel. These are then filtered to estimate the spectral energy of
modulations between 2 and 16 Hz. This front end deemphasizes
fine-grained phonetic detail like onsets and formant trajectories
and enhances spectral changes which roughly correspond to the
syllabic rate of speech. Modulation spectrogram features have
been demonstrated to be very robust in noisy and reverberant en-
vironments [5, 14]. Baseline II is used for the reverberant and
noisy test sets.

2.3. Articulatory Systems

For both acoustic baseline systems, corresponding articulatory
systems were built using a set of heuristically defined articulatory
features describing manner and place of articulation. The entire
set of features is divided into subsets according to orthogonal ar-
ticulatory dimensions (see Table 1). For each subset, a separate
MLP was trained on the acoustic parameterization whose output
units correspond to the articulatory classes in that subset. The
context window varies between 5 and 9 frames; the hidden layer
sizes ranges from 50 to 100 HUs. These were chosen to maxi-
mize the recognition accuracy while minimizing the number of
parameters. The posterior feature probabilities output from each
network are concatenated and passed on to a higher-level integra-
tive MLP which maps them to the desired phone probabilities.
This MLP uses a context of 9 frames and has 380 HUs.

In order to make the systems comparable in terms of the number
of parameters in the phone estimation network, the initial set of
articulatory features was subject to an information-theoretic fea-
ture selection algorithm [9]. This procedure successively elim-
inates irrelevant and/or redundant features from the initial set
while minimizing the relative entropy between the phoneme dis-
tribution given the original feature set and the phoneme distri-
bution resulting from the reduced feature set. Approximations
to the true conditional distribution are computed on the training
set. In preliminary experiments, this algorithm proved superior
to principal components analysis and allowed us to reduce the
initial feature set to 18 features. Voicing features and all silence
features were eliminated completely; furthermore, the features

System WER INS DEL SUB

clean AC 8.4 2.0 1.7 4.7
clean AF 8.9 1.5 2.0 5.4

reverb AC 22.1 1.8 5.9 14.4
reverb AF 23.7 3.1 4.7 16.0

30 dB noise AC 15.5 2.8 2.2 10.5
30 dB noise AF 17.4 2.4 3.4 11.6

20 dB noise AC 20.3 4.9 2.7 12.7
20 dB noise AF 21.7 4.3 3.6 13.9

10 dB noise AC 31.3 10.3 3.2 17.8
10 dB noise AF 30.0 6.1 5.7 18.3

0 dB noise AC 50.8 18.0 4.9 27.9
0 dB noise AF 43.6 7.1 10.2 26.3

Table 2: Baseline word error rates (in %), AC = acoustic, AF =
articulatory

approximant, dentalandfront-back-nilare missing from the re-
duced feature set.

2.4. Baseline Recognition Results

Tables 2 shows the baseline word error rates for clean, rever-
berant and noisy speech. Results for the acoustic (AC) and the
articulatory feature (AF) system are comparable; the only statis-
tically significant differences are those between the bold-printed
numbers. in Table 22.

3. ERROR ANALYSIS

Although both systems yield similar word error rates, this is no
indication of their performance at the level of subword unit clas-
sification. In order to ascertain whether the different systems
made different errors at this level, the frame-level phone con-
fusion matrices were analyzed. Figures 1 to 3 show graphic
representations of the diagonals of the confusion matrices for
all acoustic test sets. These reveal qualitative differences be-
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Figure 1: Frame-level phone accuracies, clean speech. Solid
lines represent the acoustic system, dashed lines the articulatory
system.

2Statistical significance is based on a difference of proportions test.
Results at a level� 0.05 were considered significant.
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Figure 2: Frame-level phone accuracies, reverberant speech.
Solid lines represent the acoustic system, dashed lines the ar-
ticulatory system.
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Figure 3: Frame-level phone accuracies, averaged over all noisy
test sets. Solid lines represent the acoustic system, dashed lines
the articulatory system.

tween the articulatory and acoustic recognition systems. In the
RASTA-based systems, consonantal segments, especially voice-
less stops and fricatives are classified more accurately in the ar-
ticulatory systems whereas the acoustic system does better on vo-
calic segments. As far as the modulation spectrogram based sys-
tems are concerned, consonants are consistently modelled bet-
ter by the acoustic systems, whereas certain vowels (especially
/ao,ow,uw,ax/) and silence are better distinguished by the articu-
latory systems. Most of these class-specific differences in recog-
nition accuracy are highly statistically significant.

The 0 dB noise test case deserves special attention because here
the articulatory system shows a markedly better performance
than the acoustic system. A closer look at the frame-level phone
accuracies showed that the main portion of the error reduc-
tion in articulatory system was due to a better separation of si-
lence, voiceless fricatives, and voiceless plosives. Thus, since
the acoustic and articulatory classifiers produce characteristically
different errors, it might be beneficial to combine them.

System FER WER INS DEL SUB

clean 22.53 7.3 1.2 1.6 4.4

reverb 30.25 20.3 3.6 3.1 13.6

30 dB noise 26.71 15.0 2.6 2.1 10.3

20 dB noise 32.13 18.4 2.8 2.8 12.7

10 dB noise 40.96 27.9 6.2 4.3 17.4

0 dB noise 52.62 41.0 5.9 10.8 24.3

Table 3: Frame and word error rates (in %) for combined system,
product rule combination

4. CLASSIFIER COMBINATION

4.1. Combination Rules

Classifier combination is widely used in the machine learning
community [7, 13] and has more recently been applied to speech
recognition [10, 14]. Since the MLPs outputs can be interpreted
as Bayesian a posteriori probabilities, the phoneme classifiers
in our hybrid systems easily lend themselves to combination
by means of standard linear probability combination rules. The
two most widely used combination rules [8] are the product rule
and the sum rule. GivenN classifiersc1; :::; cN andK classes
!1; :::!K , the product rule computes

P (!kjx1; :::xN ) =
1

P (!k)N�1

NY

n=1

P (!kjxn) (1)

wherexn is the feature vector input to classifiern andP (!k) is
the a priori probability for classk. This rule rests on the assump-
tion that the input representations given the classes are statisti-
cally independent and that classes have equal priors. Under the
assumption of equal priors, the sum rules computes the average
of the classifier output probabilities:

P (!kjx1; :::; xN) =
1

N

NX

n=1

P (!kjxn) (2)

It has been observed [8] that sum rule combination effects a
dampening of estimation errors of the individual classifiers,
whereas errors are amplified when outputs are fused by the prod-
uct rule. Thus, sum rule combination is potentially more robust
to noisy input, which might be an advantage in acoustically in-
stable environments.

4.2. Combination Recognition Results

Both of the above rules have been applied to combination un-
der all acoustic conditions. The frame-level accuracy rates for
the combined output and the corresponding word error rates are
shown in Table 3 for the product rule combination scheme and
in Table 4 for sum rule combination.

The word error rates in bold print in Table 3 are significantly
better than the corresponding best system in Table 2. As far as
the frame error rate is concerned, the sum rule scheme achieves
a better result than the product rule combination method in
noisy (20 dB, 10 dB, and 0 dB SNR) test cases and in the



System FER WER INS DEL SUB

clean 21.76 8.0 0.9 2.3 4.7

reverb 31.46 20.9 1.2 5.3 14.4

30 dB noise 27.08 15.9 2.1 2.9 11.0

20 dB noise 31.96 20.3 2.6 4.0 13.7

10 dB noise 40.38 28.7 3.7 7.1 17.9

0 dB noise 52.16 43.8 9.3 8.1 26.5

Table 4: Frame and word error rates (in %) for combined system,
sum rule combination

RASTA-based system; these differences are statistically signif-
icant. However, the product rule combination scheme always
produces an equivalent or better word error rate.

5. DISCUSSION AND CONCLUSIONS

We have presented an approach to robust processing of speech
using information from both the acoustic and the articulatory do-
main. Whereas the acoustic systems perform slightly better in
the case of clean speech and noise at high signal-to-noise ratios,
the articulatory systems show a distinct advantage in the pres-
ence of noise at low signal-to-noise ratios. Furthermore, it was
shown that although individual recognizers based on the different
representations yield similar word error rates, they provide dif-
ferent information at the frame-level. Simultaneous exploitation
of the two information sources by means of a linear combination
of the phoneme classifier outputs further improves word recogni-
tion. Obviously, the additional level of pre-phoneme classifica-
tion in terms of articulatory features seems to help identify seg-
ments which are highly confusable on the basis of the acoustic
representation alone. These findings suggest a novel approach to
the dichotomy between acoustic or perception-based representa-
tions and production-based representations, viz. the combination
of both in acoustic contexts where they can be shown to provide
different information. It should be possible to eliminate the full
articulatory feature representation of the signal. Instead, individ-
ual articulatory classifiers might be used which target that subset
of the subword classes which receives a poor classification in the
acoustic feature space (cf. also [11]).

Of the two combination rules which we investigated, the sum
rule shows a tendency to achieve better frame-level accuracy
rates in the RASTA-based system and in the noisy test cases,
which might support previous observations that sum rule combi-
nation is more robust towards estimation errors produced by the
individual classifiers. The product rule, by contrast, achieves a
lower word error rate. This is probably not due to independence
of the input representations; the articulatory representation has
in all cases been derived from the acoustic representation and is
unlikely to be completely independent from it. A more plausible
reason is that product rule combination produces phoneme distri-
butions which interact more favourably with the structure of the
word recognition lexicon (pronunciation variants, minimum du-
rations, etc.). This suggests that a combination scheme should be
applied which is designed to minimize word-error rate directly.
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