A LANGUAGE MODEL COMBINING TRIGRAMSAND STOCHASTIC
CONTEXT-FREE GRAMMARS

John Gillett and Wayne Ward
Carnegie Mdlon University

gillett@cs.cmu.edu, whw@cs.cmu.edu

work, most classes are degenerate (single-word), with a
ABSTRACT small number of classes matching short strings. This puts
less burden on the grammars as it does not require very
We propose a class trigram language model in which complete coverage. It provides a graceful way to tailor
each class is specified by a stochastic context-free the model to the coverage of the grammars. The model
grammar. We show how to estimate the parameters of the matches patterns when it can, but still assigns non-zero
model, and how to smooth these estimates. We present probability to every word string.
experimental perplexity and speech recognition results.
Section 2 presents the model and an example. Section 3
1. INTRODUCTION describes an estimation-maximization (EM) algorithm to
train the model's parameters, and section 4 describes a
The two language models most commonly used in speech smoothing algorithm. Section 5 presents experimental
recognition systems are the trigram model and the results.
stochastic context-free grammar (SCFG). The trigram
model is simple and powerful, but can’t use long-range 2. THE MODEL
information or prior knowledge of language, and it
estimates rare-word and unseen-sequence probabilititee parameters of our model are class trigram
poorly. The SCFG can model long-range effects angrobabilitiesP(C | A, B), where each of, B, andC is a
works well on limited-domain tasks of low perplexity, butclass specified by a SCFG; and grammar rule
large-vocabulary, general-purpose SCFGs work poorlgrobabilities P(X > y), whereX is a non-terminal angis
because they are either too brittle to handle unseen dagequence of terminals and non-terminals.
or too ambiguous to be useful. SCFGs are smoothed i
differently than trigram models: where trigrams assign 40 Score a sample sentence, we defifBATE] class by
probability for all possible sequences of words, SCFG&e rules
smooth across tightly-constrained rule expansions. Sin
their strengths are complementary, we combine the t ATE] = {month} {day}
models to take advantage of the best properties of each. "
{month} = "january
We propose a class trigram model [1] in which each class
is specified by a stochastic context-free grammar [2].
While our algorithms permit the specification of complex
classes, our intent is to use simple classes that capture
straightforward concepts, and to leave the rest of t -
modeling problem to the trigrams. We use clas a2 {digt
grammars to model closed-form expressions specific to a - {digit} {digit}
task domain, such as dates or times; several current
speech applications depend on the extraction andigit} -"0"
interaction of such phrases. The trigram provides a
stochastic model of how these content-bearing phrases
are embedded in sentences.

-2 "december"

>"g"
This work was developed from ideas presented by Ward
& Young [3]. Their system used a trigram of slot-level] o .
classes in which each class was expanded by a conteiext we define a trivial class for each word in our
free grammar. A grammar circumscribed the word/ocabulary:[apple] > “apple”, ... ,[zebra] > "zebra".
sequences for a class, and a word bigram model assigr¥@ assign uniform class trigram probabilitR(| A, B)
probabilities within a class. The slot-level classes in theff /N, whereN is the number of classes, and uniform
system matched longer strings of words. In the curre@tfammar rule probabilitieB(X 2y) = 1/ny, whereny is

the number of rewrite rules for X. We define a parse of a
sentence s to be a sequence of classes and a
corresponding set of grammar rules which together
generate the sequence of words in s. We use an artificial
word "//[" to indicate the boundary between sentences,
"/I[" begins an utterance with probability 1.

For the sentence s = "/// it snowed on july 5 //[*, two
parses are possible. The first consists entirely of trivial
classes:

to: [1//] [lit] [910|Wed] [Cin] [J'llily] [?] [/|//]
/il it snowed on juy 5 /I
The second parse uses the [DATE] class:
ty: [/ [if] [snowed] [on] [DATE] [/

/|// ilt sntlnwed oln /|//

{month} {day}
jully {d|lgit}
5

The probability of sis
P(S) = P(S!to) + P(S!tl)

i

ONDO ONDO

111
12 2 10
More generally, if welet ¢(X > v; t, s) denote the number
of times the rule X - y is used in generating the sentence

sviathe parset, and C, ..., G, denote the class sequence
usedint, then

P(s) = z P(s,t)
t

where

n
P(s.t) =[] P(Ci 1Ci-2,Ci-g) - [TP(X = y)* -Vt
1=1 XHy

To calculate this sum efficiently, we represent the set of
parses by a directed graph, each vertex of which
represents a class generating a sub-string of s; and whose
edges are such that the set of paths through the graph
corresponds to the set of parses of s. The graph for our
sample sentence is

[july] [5]
[/ [it] [snowed] [on] < > [0
[DATE]

(If a class can match a sub-string in more than one way,

we make one vertex for each SCFG parse. This
eliminates the need for an inside-outside agorithm [2],
but risks inefficiency for ambiguous grammars.)

To get P(s, t) from our graph, we follow the path
corresponding to t from its start to its end: we set the start
vertex's probability to 1, and then at each vertex we
multiply in the trigram probability of the current vertex’s
class given the previous two vertices' classes, and the
vertex's SCFG probability. To calculate

P(s) = z P(s,t)
t

we sum the probabilities over al paths from the start
vertex to the end vertex. A forward-backward algorithm

[4] stores probabilities on the graph’s edges to calculate
this sum efficiently. (Only forward probabilities are
required to calculated’(s); backward probabilities are
needed for the training described in the next section.)

3. TRAINING

We use the EM algorithm [5] to set the model parameters
to (local) maximum likelihood estimates over a training
text. We choose an initial parameter set, and then repeat
the process of collecting expected counts over the text
according to the current model, and normalizing these
counts to create a new model, until the sequence of
likelihoods of the text according to these successive
models converges.

To facilitate collecting the required class trigram counts,
let c(A, B, C; t, s) denote the number of times the class
sequencé€A, B, C) appears in the parseof the sentence

s, let count(A, B, C; s) denote the expected number of
times the class sequen@ B, C) appears in all parses of
s, and letcount(A, B, C) denote the expected number of
times the class sequen@ B, C) appears in all parses of
all sentencesin the training text. Then

count (A,B,C;s) = Z P(t]|s).c(A,B,C;t,s)
t

and
count (A,B,C) = Z count (A,B,C;s)
S

Similarly, to facilitate collecting the required grammar
rule counts, letcount(X = vy, s) denote the expected
number of timesX > y is used in all parses sf and let
count(X > y) denote the expected number of times at
>vyis used in all parses of all sentences in the text. Then

count (X - y;s)= z P(t|s)-c(X - y;t,s)
t
and

count (X - y)= Z count (X - y;s)
S

To collect the expected counts for s, we build its graph
and run the forward-backward algorithm.
We st counttA, B, C, s = 0 and
count(X »y;)= 0foral A B, C, X,andy. Then a
second forward pass through the graph visits each vertex
to increment these counts.

As we process each sentence s in the training text in this
manner, we accumul ate

count(A, B,C) = z count(A, B,C;s)

and
count(X —y)= Z count(X - y;s)
S

Finally, we normalize the expected counts to get our next
model:

count(A, B,C)

P'(C|AB)=
(CIAB) Zcount(A,B,D)
D
and
P(X - y) = count(X - y)

z count(X - 8)
[¢]

4. SMOOTHING

We use interpolated estimation [1] to smooth our model.
We form smoothed class trigram probabilities
S(C | A, B) by interpolating uniform, unigram, bigram,
and trigram probabilities:

1
=\ .
S(C|AB)=A,(AB) EW@

+A,(AB)-P(C)

+A,(AB)-P(C|B)

+X,(AB)-P(C|AB)
where the lambdas sum to 1 and depend on A and B only
through the count of the bigram (A, B) and the count of
the unigram B. We form smoothed rule probabilities

SX > y) by interpolating uniform and trained rule
probabilities:

SX 2Y) = Ax (Uny) + (1L =Ax) - P(X >Y)

We choose Ai(A, B) and Ay by the EM agorithm to
maximize the likelihood our smoothed model assignsto a
held-out training text.

5. EXPERIMENTAL RESULTS

We created the language model described for two
different speech-recognition tasks: a medical records

transcription system and an automated travel agent. In
each case, we compared the perplexity and recognition
error rate of our model to those of a standard word
trigram model [6]. For comparing recognition rates, we
rescored word lattices produced by CMU’s Sphinx Il
speech decoder [7]. For the new model, we did a Viterbi
search through a graph of parses built onto the word
lattice to find that path for which P(s, t) - A(a | s) is a
maximum, where A(a | s) is the probability assigned by
the acoustic model to the acoustic information a given the
sentence s. We would like to do a forward search and find
the path for which

P(s)- A(als) = EZ P(s,t)% A(als)
t

is a maximum, but we don't know how to do this
efficiently.

For the medical transcription task, we had several
hundred transcripts of dictated physical exams. Of 20,358
sentences (150,116 words), we used 18,326 for training
and 2,032 for smoothing. We gathered 392 new sentences
for testing. We created classes to match blood pressures
(“blood pressure is 125 over 80"), temperatures, pulse
rates, and similar things. We trained the word trigram
model over all non-test sentences.

Perplexity | Word Error
Standard 27.7 12.4%
New 23.1 12.1%

Figure 1: Medical transcription results

Figure 1 indicates that for the medical transcription task
our model gave a 17% improvement in perplexity without
significantly improving the word recognition error rate.

For the automated travel agent, our data consisted of
spontaneous interaction, via a telephone call, with a
reservations system. Our training set contained 1,400
utterances (8,036 words) and the test set contained 300.
We created classes to match things like dates, times, and
airport names. This travel agent is in an early stage of
development.

Perplexity| Word Error
Standard 32.3 45.9%
New 26.2 48.2%

Figure 2: Automatic travel agent results

Figure 2 indicates that for the travel agent task our model
gave a 19% improvement in perplexity, but increased the
word recognition error rate.

We are continuing to experiment with this new model,
and we hope to extend it to capitalize on knowledge of
the dialog state in a spoken language understanding
system.

6. REFERENCES

1. Brown, P., dellaPietra, V., de Souza, P, La, J,
Mercer, R., “Class-Based n-gram Models of
Natural Language,”Computational Linguistics
18, pp. 467-479, 1992.

2. Baker, J., “Trainable Grammars for Speech
Recognition,” Speech Communication: Papers
Presented at the 97" Meeting of the Acoustical
Society of America, pp. 547-550, 1979.

3. Ward, W. and Young, S.R., “Flexible Use of
Semantic Constraints in Speech Recognition,
Proceedings of ICASSP93 11, pp. 49-50, 1993.

”

4. Baum, L., “An Inequality and Associated
Maximization Technique in Statistical Estimation
for Probabilistic Functions of Markov Processes,”
Inequalities—IIl (Proceedings of the Third
Symposium on Inequalities Held at the University
of California, Los Angeles, 1969p. 1-8, 1972.

5. Demptser, A., Laird, N.,, and Rubin, D.,
“Maximum Likelihood from Incomplete Data via
the EM Algorithm,” Journal of the Royal
Satistical Society 39 B, pp. 1-38, 1977.

6. Clarkson, P., and Rosenfeld, R., “Statistical
Language Modeling Using the CMU—
Cambridge Tool Kit,” Eurospeech '97
Proceedingspp. 2707-2710, 1997.

7. Ravishankar, M.K., “Efficient Algorithms for
Speech Recognition,” Ph.D. Dissertation CMU-
CS-96-143, School of Computer Science,
Carnegie Mellon University, 1996.

