
A LANGUAGE MODEL COMBINING TRIGRAMS AND STOCHASTIC
 CONTEXT-FREE GRAMMARS

 John Gillett and Wayne Ward
 Carnegie Mellon University

gillett@cs.cmu.edu, whw@cs.cmu.edu

ABSTRACT

We propose a class trigram language model in which
each class is specified by a stochastic context-free
grammar. We show how to estimate the parameters of the
model, and how to smooth these estimates. We present
experimental perplexity and speech recognition results.

1. INTRODUCTION

 The two language models most commonly used in speech
recognition systems are the trigram model and the
stochastic context-free grammar (SCFG). The trigram
model is simple and powerful, but can’t use long-range
information or prior knowledge of language, and it
estimates rare-word and unseen-sequence probabilities
poorly. The SCFG can model long-range effects and
works well on limited-domain tasks of low perplexity, but
large-vocabulary, general-purpose SCFGs work poorly
because they are either too brittle to handle unseen data
or too ambiguous to be useful. SCFGs are smoothed
differently than trigram models: where trigrams assign a
probability for all possible sequences of words, SCFGs
smooth across tightly-constrained rule expansions. Since
their strengths are complementary, we combine the two
models to take advantage of the best properties of each.

 We propose a class trigram model [1] in which each class
is specified by a stochastic context-free grammar [2].
While our algorithms permit the specification of complex
classes, our intent is to use simple classes that capture
straightforward concepts, and to leave the rest of the
modeling problem to the trigrams. We use class
grammars to model closed-form expressions specific to a
task domain, such as dates or times; several current
speech applications depend on the extraction and
interaction of such phrases. The trigram provides a
stochastic model of how these content-bearing phrases
are embedded in sentences.

 This work was developed from ideas presented by Ward
& Young [3]. Their system used a trigram of slot-level
classes in which each class was expanded by a context-
free grammar. A grammar circumscribed the word
sequences for a class, and a word bigram model assigned
probabilities within a class. The slot-level classes in their
system matched longer strings of words. In the current

work, most classes are degenerate (single-word), with a
small number of classes matching short strings. This puts
less burden on the grammars as it does not require very
complete coverage. It provides a graceful way to tailor
the model to the coverage of the grammars. The model
matches patterns when it can, but still assigns non-zero
probability to every word string.

 Section 2 presents the model and an example. Section 3
describes an estimation-maximization (EM) algorithm to
train the model's parameters, and section 4 describes a
smoothing algorithm. Section 5 presents experimental
results.

2. THE MODEL

The parameters of our model are class trigram
probabilities P(C | A, B), where each of A, B, and C is a
class specified by a SCFG; and grammar rule
probabilities P(X È γ), where X is a non-terminal and γ is
a sequence of terminals and non-terminals.

To score a sample sentence, we define a [DATE] class by
the rules

[DATE] È {month} {day}

{month} È "january"

 ...

È "december"

{day} È {digit}

È {digit} {digit}

{digit} È "0"

 ...

È "9"

Next we define a trivial class for each word in our
vocabulary: [apple] È "apple", ... , [zebra] È "zebra".
We assign uniform class trigram probabilities P(C | A, B)
= 1/N, where N is the number of classes, and uniform
grammar rule probabilities P(X È γ) = 1/nX, where nX is

the number of rewrite rules for X. We define a parse of a
sentence s to be a sequence of classes and a
corresponding set of grammar rules which together
generate the sequence of words in s. We use an artificial
word "///" to indicate the boundary between sentences;
"///" begins an utterance with probability 1.

For the sentence s = "/// it snowed on july 5 ///", two
parses are possible. The first consists entirely of trivial
classes:

t0: [///] [it] [snowed] [on] [july] [5] [///]

/// it snowed on july 5 ///

The second parse uses the [DATE] class:

t1: [///] [it] [snowed] [on] [DATE] [///]

/// it snowed on ///

{month} {day}

 july {digit}

 5

The probability of s is

More generally, if we let c(X È γ; t, s) denote the number
of times the rule X È γ is used in generating the sentence
s via the parse t, and C1, …, Cn denote the class sequence
used in t, then

To calculate this sum efficiently, we represent the set of
parses by a directed graph, each vertex of which
represents a class generating a sub-string of s; and whose
edges are such that the set of paths through the graph
corresponds to the set of parses of s. The graph for our
sample sentence is

(If a class can match a sub-string in more than one way,

we make one vertex for each SCFG parse. This
eliminates the need for an inside-outside algorithm [2],
but risks inefficiency for ambiguous grammars.)

To get P(s, t) from our graph, we follow the path
corresponding to t from its start to its end: we set the start
vertex’s probability to 1, and then at each vertex we
multiply in the trigram probability of the current vertex’s
class given the previous two vertices’ classes, and the
vertex’s SCFG probability. To calculate

we sum the probabilities over all paths from the start
vertex to the end vertex. A forward-backward algorithm
[4] stores probabilities on the graph’s edges to calculate
this sum efficiently. (Only forward probabilities are
required to calculate P(s); backward probabilities are
needed for the training described in the next section.)

3. TRAINING

We use the EM algorithm [5] to set the model parameters
to (local) maximum likelihood estimates over a training
text. We choose an initial parameter set, and then repeat
the process of collecting expected counts over the text
according to the current model, and normalizing these
counts to create a new model, until the sequence of
likelihoods of the text according to these successive
models converges.

To facilitate collecting the required class trigram counts,
let c(A, B, C; t, s) denote the number of times the class
sequence (A, B, C) appears in the parse t of the sentence
s; let count(A, B, C; s) denote the expected number of
times the class sequence (A, B, C) appears in all parses of
s; and let count(A, B, C) denote the expected number of
times the class sequence (A, B, C) appears in all parses of
all sentences s in the training text. Then

Similarly, to facilitate collecting the required grammar
rule counts, let count(X È γ; s) denote the expected
number of times X È γ is used in all parses of s; and let
count(X È γ) denote the expected number of times that X
È γ is used in all parses of all sentences in the text. Then

10

1

2

1

12

1
111

),(),()(
56

10

••••




+





=

+=

NN

tsPtsPsP

∏ ∏

∑

= →

→•−− →=

=

n

i X

stXc
iii

t

XPCCCPtsP

tsPsP

1

),;(
12)(),|(),(

where

),()(

γ

γγ

∑=
t

tsPsP),()(

∑

∑

→=→

→=→ •

s

t

sXcountXcount

stXcstPsXcount

);()(

and

),;()|();(

γγ

γγ

∑

∑

=

= •

s

t

sCBAcountCBAcount

stCBAcstPsCBAcount

);,,(),,(

and

),;,,()|();,,(

[///] [it] [snowed] [on] [///]

[july] [5]

[DATE]

To collect the expected counts for s, we build its graph
and run the forward-backward algorithm.
We set count(A, B, C; s) = 0 and
count(X È γ; s) = 0 for all A, B, C, X, and γ. Then a
second forward pass through the graph visits each vertex
to increment these counts.

As we process each sentence s in the training text in this
manner, we accumulate

Finally, we normalize the expected counts to get our next
model:

4. SMOOTHING

We use interpolated estimation [1] to smooth our model.
We form smoothed class trigram probabilities
S(C | A, B) by interpolating uniform, unigram, bigram,
and trigram probabilities:

where the lambdas sum to 1 and depend on A and B only
through the count of the bigram (A, B) and the count of
the unigram B. We form smoothed rule probabilities
S(X È γ) by interpolating uniform and trained rule
probabilities:

S(X È γ) = λX ·(1/nX) + (1 – λX) · P(X È γ)

We choose λi(A, B) and λX by the EM algorithm to
maximize the likelihood our smoothed model assigns to a
held-out training text.

5. EXPERIMENTAL RESULTS

We created the language model described for two
different speech-recognition tasks: a medical records

transcription system and an automated travel agent. In
each case, we compared the perplexity and recognition
error rate of our model to those of a standard word
trigram model [6]. For comparing recognition rates, we
rescored word lattices produced by CMU’s Sphinx II
speech decoder [7]. For the new model, we did a Viterbi
search through a graph of parses built onto the word
lattice to find that path for which P(s, t) • A(a | s) is a
maximum, where A(a | s) is the probability assigned by
the acoustic model to the acoustic information a given the
sentence s. We would like to do a forward search and find
the path for which

is a maximum, but we don’t know how to do this
efficiently.

For the medical transcription task, we had several
hundred transcripts of dictated physical exams. Of 20,358
sentences (150,116 words), we used 18,326 for training
and 2,032 for smoothing. We gathered 392 new sentences
for testing. We created classes to match blood pressures
(“blood pressure is 125 over 80”), temperatures, pulse
rates, and similar things. We trained the word trigram
model over all non-test sentences.

Perplexity Word Error

Standard 27.7 12.4%

New 23.1 12.1%

Figure 1: Medical transcription results

Figure 1 indicates that for the medical transcription task
our model gave a 17% improvement in perplexity without
significantly improving the word recognition error rate.

For the automated travel agent, our data consisted of
spontaneous interaction, via a telephone call, with a
reservations system. Our training set contained 1,400
utterances (8,036 words) and the test set contained 300.
We created classes to match things like dates, times, and
airport names. This travel agent is in an early stage of
development.

Perplexity Word Error

Standard 32.3 45.9%

New 26.2 48.2%

Figure 2: Automatic travel agent results

),|(),(

)|(),(

)(),(

1
),(),|(

3

2

1

0

BACPBA

BCPBA

CPBA

N
BABACS

•

•

•

•

+

+

+






=

λ

λ

λ

λ

∑

∑

→
→=→

=

θ
θ

γγ
)(

)(
)(’

and

),,(

),,(
),|(’

Xcount

Xcount
XP

DBAcount

CBAcount
BACP

D

∑

∑

→=→

=

s

s

sXcountXcount

sCBAcountCBAcount

);()(

and

);,,(),,(

γγ)|(),()|()(saAtsPsaAsP
t

•• 









= ∑

Figure 2 indicates that for the travel agent task our model
gave a 19% improvement in perplexity, but increased the
word recognition error rate.

We are continuing to experiment with this new model,
and we hope to extend it to capitalize on knowledge of
the dialog state in a spoken language understanding
system.

6. REFERENCES

1. Brown, P., della Pietra, V., de Souza, P., Lai, J.,
Mercer, R., “Class-Based n-gram Models of
Natural Language,” Computational Linguistics
18, pp. 467-479, 1992.

2. Baker, J., “Trainable Grammars for Speech
Recognition,” Speech Communication: Papers
Presented at the 97th Meeting of the Acoustical
Society of America, pp. 547-550, 1979.

3. Ward, W. and Young, S.R., “Flexible Use of
Semantic Constraints in Speech Recognition,”
Proceedings of ICASSP93 II, pp. 49-50, 1993.

4. Baum, L., “An Inequality and Associated
Maximization Technique in Statistical Estimation
for Probabilistic Functions of Markov Processes,”
Inequalities—III (Proceedings of the Third
Symposium on Inequalities Held at the University
of California, Los Angeles, 1969), pp. 1-8, 1972.

5. Demptser, A., Laird, N., and Rubin, D.,
“Maximum Likelihood from Incomplete Data via
the EM Algorithm,” Journal of the Royal
Statistical Society 39 B, pp. 1-38, 1977.

6. Clarkson, P., and Rosenfeld, R., “Statistical
Language Modeling Using the CMU—
Cambridge Tool Kit,” Eurospeech ’97
Proceedings, pp. 2707-2710, 1997.

7. Ravishankar, M.K., “Efficient Algorithms for
Speech Recognition,” Ph.D. Dissertation CMU-
CS-96-143, School of Computer Science,
Carnegie Mellon University, 1996.

