INTERFACING ACOUSTIC MODELS WITH NATURAL LANGUAGE
PROCESSING SYSTEMS

Michael T. Johnson, Mary P. Harper, and Leah H. Jamieson

Purdue University, School of Electrical and Computer Engineering
West Lafayette, IN 47907
{mjohnson,lhj,harpé@ecn.purdue.edu

ABSTRACT our research the recognition task is Research Management, a mid-
) ) size corpus (approximately 1000 words) containing 5000 acoustic
The research presented here focuses on implementation and @ferances of 3000 distinct sentences.
ficiency issues associated with the use of word graphs for inter- | addition, since word graphs can be made arbitrarily large
facing acoustic speech recaion systems with natural fguage  py using lengthy acoustic processing with little pruning, experi-
processing systems. The effectiveness of various pruning mefients were done which tracked the average word graph size, av-
ods for graph construction is examined, as well as techniques fgfage word graph accuracy, and information gain (versus N-best

word graph compression. In addition, the word graph represefits of 1-10 sentences) against a wide variety of pruning control
tation is compared to another predominant interface method, tharameters.

N-best sentence list.

2. SYSTEM CONFIGURATION

1. INTRODUCTION

The configuration for the system is shown in Figure 1 below. The
An important research topic in recent years has been the integgoustic portion of the system is based on a multiple-mixture
tion of speech recogtion systems with laguage models [2, 8]. triphone Hidden Markov Model (HMM) [7] with a simple inte-
Many systems integrate stochastic language models directly inggated grammar (either wordpair or bi-gram models), based on
the speech recognizer. However, a structure in which a front-eridiTK Version 2.1 by Entropic [10]. Recognition is achieved using
acoustic recognizer is interfaced to a separate language processirigken-passing implementation of the Viterbi algorithm, the out-
module allows use of more sophisticated parsing techniques apdt of which is a large recognition lattice. Theuage model is
additional semantic and contextual information to aid in speech Constraint Dependency Grammar (CDG) [2] ; the CDG parser
understanding. The choice of data representations used to accdsrdesigned to parse either word graphs or individual sentences.
plish this interface is of great significance, because this choice

determines how word and sentence hypotheses are evaluated in
Word

light of our understanding of language and grammar. The under-

lying goal is to identify the 'best' overall sentence candidate with
respectto all available knowledge sources, as constrained by time Acoustic | | Graph Pruned Highest Pobebilly
and space considerations. Speecl: Processing g Word Parsable Sentence
Recently, word graphs have begun to be used as an alternativé™ y A Constraint-based | GraPh | Hypoesis >
i i i A A Prosodic | Higher-level Selecti
to N-best sentence lists as an interface representation [1, 4, 5, 6]. anotaton]  Processing election
N-best lists are a stream-based interface between acoustic and lan- Pfgfjs"gﬁg I <
guage components, where the system must work on alternatives
one at a time. Word graphs, although they can be constrained to

*
I
I
the stream-based view, are able to support an aggregate process-

ing view as well, and therefore have flexibility which is important
in examining integration alternatives. . . . . .

This research concentrates on evaluating the strengths of tE]' ll:lI{gdj-ih ;ﬁséir::eﬁlto;ksg'ri?ram (dashed lines are not imple-
word graph representation. We systematically measure word grap Y
effectiveness against a variety of recognition parameters, and for . . . )
reference compare these measures against the traditional N-be@t clarity, we will define the following terms:
model. Effectiveness is judged here in terms of the accuracy
representation, size of representation, and ease of interface to
ditional knowledge sources. Although prior work has been done
on evaluation of the word graph representation [3, 5, 9], most of
this work is theoretical in nature and has not included systematic
experimentation and comparison to alternative methods of repre-

gfagtice The Lattice represents the raw output of the acoustic rec-
ognizer, and is a complete record of all tokens which were
not pruned during the recognition process. It may include
many similar or identical paths with slight differences in
word starting and ending times.

sentation. Word Graph This is directed acyclic graph representing the pos-
Careful study is made of whether significantly more informa- sible word paths through the utterance, after compressing

tion is contained in word graphs as compared to N-best lists. The and post-processing the word lattice. There are several

gain in information is determined by tracking the number of sen- equivalent definitions for word graphs; in our research the

tences throughout a corpus for which the word graph representa-  graph nodes represent words and connecting arcs represent
tion contains the correct sentence but the N-best list does not. For ~ word transitions. The graph may be re-scored and pruned



to incorporate additional knowledge sources, thus decreas- 4, RESULTS
ing the total number of paths.

N-best Sentence ListThis is a list of the top N most likely sen- The entire Resource Management corpus (roughly 5000 separate

tence paths, produced by searching the lattice. utterances of 3000 distinct sentences) was evaluated for each com-
bination of parameters.
A lier, si i hods h li i-
3. REPRESENTATION ISSUES s stated earlier, since pruning methods have been applied di

rectly to the recognition lattice, the N-best sentence list is a subset

. . of the word graph. To quantify the amount of information gained

3.1. Pruning Mechanisms by using the word graph representation, we compute the Infor-
mation Gain as the number of sentences for which word graphs

Pruning is typically performed to control lattice growth duringcontain the correct utterance and N-best sentences do not, i.e.:

recognition. All pruning methods are applied to thtit itself
and therefore affect the N-best list and word graph in identical

ways. The pruning variables include: GainG = W — N, where
e Beam Width: As tokens pass through the recé@gm net-
work, the total number of active word models is limited W = No. of word graphs containing correct utterance
by a beam width mechanism. The difference between the
log probability ofeach active model and the current maxi- N = No. of N-best lists containing correct utterance
mum log probability is the determining factor in this prun-
ing method. Lattice accuracy, defined as the percentage ttickes which con-

¢ Maximum Active Models: Similar to beam width prun- tin the correct sentence, and lattice size, defined as the number
ing in that it works by limiting the number of active word Of latticenodes, are also tracked for all cases. Both word-pair and

models, this method utilizes a hard ceiling on the numbe?i-gram grammar models were considered.
of models allowed to be active at any pointin the utterance.

e Word End Likelihood: This is also a beam width mech- .

anism, but one which considers only models labeled #&-1. Pruning Results

word-end nodes within the recoijon network, thus al- i .

lowing pruning to happen at the word level rather than the ~ 4-1-1. Beam Width Pruning

phoneme level. The beam width used in this set of experiments was adjusted from
¢ Number of Tokens: Pruning with this method is imple- 50 (very tight pruning) to infinity (no pruning). The impact on

mented by starting the recognition processich state average lattice size was significant, growing from 13.305.0

with multiple tokens rather than just one, allowing for anodes with a word pair grammar and from 14.9 to 495.0 nodes

higher branching factor in the lattice. with a bi-gram grammar. As the pruning was decreased, a small

. . . but increasing number of sentences in the set were contained in

The measures by which the effect of these pruning variablgge \word graph but not the N-best list. At most, G reached 20

ﬁigg; daitgr&i:réegcigﬂggs gjr(iar;?g(raig/tlgtgget Iiiezg é?ge??:gré’g‘f"’gt_ﬁnten%ef, re_prg_sentinzg 0.39% of the corpus. These results are
own below in Figure 2.

tices which contained the correct sentence as a possible pat?w). d
Experiments were run which varied each of the pruning variables
;ggll\ig%:z”gé\gg:lr?ehp?cl)(ijr:?g all other factors to an empirically es- 4.1.2. Maximum Active Model Pruning
The maximum number of active models was varied from 25 to
. . infinity, yielding an average lattice size ranging from 23.3 to 58.6
3.2. Post-processing Techniques in the word pair case and from 81.6 to 241.0 in the bi-gram case.

In addition to the pruning mbbds, some post-processing can pa/ith this method, G peaked at 46 (0.89% of the corpus). Overall,
done which decreases the average size of ttiedavhile main-  this approach yielded the strongest data for word graph usage,
taining all possible lattice paths. This compression is possibRSPecially considering that the average lattice size was smaller
because identical paths are represented more than once in the {3@n that obtained using beam width pruning. Results for this
tice due to differences in word starting and ending times. ThegPproach are shown below in Figure 3.
paths may be combined in a post-processing step.

Our algorithm identifies all path-identical sub-graphs by find-
ing and compressing node pairs which represent identical words 4.1.3. Word-end Pruning

and have either identical precursor lists or identical successor lisghe \word-end beam width level was adjusted from 25 to infinity.
(or both). Recursive application of this technique ensures thai,ig change, however, did not result in an increase in G, which

identical sub-graphs of any size will be compressed, giving thgayened out at a level of 6 (0.12% of the corpus) and stayed there
smallest possible graph that still contains the same word-paths foughout the sequence of experimental runs. Impactttioea

the original lattice. Using this compression technique, the worgd;, ¢ \yas negligible, moving from an average size of 22.5 up to
graphs for our experiments were an average of 60% smaller thag o

the original lattices.
Post-processing techniques may also be used to handle lexi-

cal issues between the recognizer and the parser, such as contrac- .
tions and proper nouns. In our system, all contractions are identi- 4.1.4. Token Pruning

fied in the word graph and split into multipfeodes, while proper The number of tokens per state was increased from 2 up to 10;
nouns are identified and compressed (subject to suitable path ctnowever, as with the word-end pruning, the changes had little im-
straints) into single nodes. Techniques such as these may eitheidaet on G, which stayed at 9 (0.18% of the corpus) through the
implemented as separate processing tasks or incorporated dire@kperiment. Again, lattice sizes were fairly constant, averaging
into the parser. from 24.8 to 35.4.
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Figure 3: Information Gain vs. Number of Active Models Figure 5: Representation size

4.2. Representation Issues
. . ) . ) recognition model, iteccuracy, and the degree of pruning. Word

To summarize the overall impact of the information gain due tQaph sizes were manageable even at lower pruning levels, and
the word graph representation, Figure 4 displays the informatiofformation gain at these levels varied from 17% for the 1-best
gain (as a percentage of the sentences in the corpus) for increggse to a littleunder 1% for the 10-best case. Although infor-
ing length N-best lists, for the best case experiment (word-pajhation gain certainly correlates with word graph size, the graphs
grammar, infinite maximum active models). Figure 5 shows th@hich had the highest overall accuracies (peaking at a sentence-
relative size of the word graphs and N-best lists. _ level accuracy of 98%) were not in fact the largest ones. This

From the above data it is clear that the two first two pruning,ggests that high accuracy and tractable word graph sizes are
methods, which affected the number of active models, were thgytually achievable. Results also suggest that the importance of

predominant factors in causing a change in the word graph efflorg graph representations will likely grow with higher vocabu-
cacy. These were also the methods which had the greatestimppg{, and higher complexity tasks.

on total lattice size. Since smaller lattices are desireable for time
complexity reasons, it is important to know whether small lattices The experiments to date have examined the effectiveness of
and high accuracy can by achieved simultaneously. N-best and word graph representations in the context of an overall
Figure 6 shows graph accuracy versus pruning levels, whilanguage processing system. Word graphs clearly have an advan-
Figure 7 shows the average word graph size. Following thesgge in compactness, since graphs are smaller than lists (in terms
Figures 8 and 9 show the correlation scatterplots between woaod number of words), yet N-best lists are retrievable directly from
graph size and information gain and between word graph acctite graph for any N. This allows both aggregate and stream pro-
racy and information gain, with correlation coefficients of 0.795%essing approaches to be supported.
and 0.6745, respectively. Together, these figures show that exper- o o .
iments giving the largest word graphs are not necessarily those Future work will include similar experiments on larger vocab-
giving the highest accuracies or largest information gains. ulary corpora with varying acoustic and language parsing models.
In addition, the interface mechanism can be tightened by incorpo-
rating feedback from the language model directly into the acoustic
5. CONCLUSION recognition. The benefits of a word graph approach are likely to
increase with a tighter interface, since the word graph parser could
Results indicate that word graphs do offer a clear representatiarork together with the recognizer to pruiiegal sentences from
advantage. The degree of this advantage is tied to the type thie lattice during the regnition process.
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