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ABSTRACT

Speaker normalization is a process in which the short-time

features of speech from a given speaker are transformed so
as to better match some speaker independent model. Vocal
tract length normalization (VTLN) is a popular speaker
normalization scheme wherein the frequency axis of the
short-time spectrum associated with a speaker’s speech is
rescaled or warped prior to the extraction of cepstral fea-
tures. In this work, we develop a novel speaker normaliza-
tion scheme by exploiting the fact that frequency domain
transformations similar to that inherent in VTLN can be
accomplished entirely in the cepstral domain through the
use of conformal maps. We propose a class of such maps,
designated all-pass transforms for reasons given hereafter,
and in a set of speech recognition experiments conducted
on the Switchboard Corpus demonstrate their capacity to
achieve word error rate reductions of 3.7% absolute.

1. INTRODUCTION

In speaker normalization, we attempt to transform the
short-time features of a given speaker’s speech in such a
fashion that they will better match a speaker independent
model. This normalization is performed with the inten-
tion of reducing the word error rate of a large vocabulary
continuous speech recognition system.

Undoubtedly one of the most popular speaker normaliza-
tion schemes is vocal tract length normalization (VTLN), a
technique which has enjoyed a large coverage in the litera-
ture [10]. In a typical implementation of VTLN, a digitally-
sampled utterance is windowed to isolate a short segment,
then analyzed with the FF'T to obtain the short-time spec-
trum. This spectrum may or may not be subjected to
smoothing via the estimation of a linear predictive model.
Normalization is achieved by warping the frequency axis
of the short-time spectrum using a suitable parameterized
function; the parameter values are estimated individually
for each speaker. The normalized cepstra serving as fea-
tures for a speech recognition system are then extracted by
taking the inverse FFT on the warped spectrum.

In the present work, we extend and generalize the
speaker normalization paradigm outlined above. Our point
of departure is the observation that the parameterized warp
function used in most VITLN implementations can be ap-
proximated to a reasonable degree by the bilinear trans-
form [1, 6]. The bilinear transform is a complex-valued
function of a single complex argument, is uniquely spec-

ified by a single parameter, and is analytic in an annu-
lar region including the unit circle. As discussed in prior
work [4, 6, 7], the latter property implies that a sequence
of transformed cepstra can be obtained through a linear
transformation of a sequence of initial cepstra. In addi-
tion, the bilinear transform maps the unit circle in the
complex plane back onto the unit circle, and for this reason
is referred to as an all-pass transform. As we will shortly
demonstrate, it is possible to formulate more general all-
pass transforms, which are specified by more than one pa-
rameter and thus are potentially more powerful transfor-
mations for use in speaker normalization. These trans-
forms, like the bilinear transform, are analytic on the unit
circle, and therefore can be implemented through a linear
transformation of cepstral features.

The balance of this work is organized as follows. In Sec-
tion 2., we summarize several important properties of all-
pass transforms, and from these construct the theoretical
framework necessary to calculate a normalized cepstral se-
quence from an un-normalized initial sequence. Section 3.
discusses a few pertinent details of the parameter estima-
tion which must be performed in implementing a practical
speaker normalization scheme. In Section 4. we document
the results of several speech recognition experiments con-
ducted to date. These experiments were undertaken to
compare conventional VTLN to the speaker normalization
paradigm proposed in this work, using both the bilinear
transform as well as the more general all-pass transforms.
Finally, in Section 5. we summarize the results of our ini-
tial experiments, speculate on their meaning, and discuss
plans for future work.

2. THEORETICAL DEVELOPMENT

Consider a real, even cepstral sequence c[n] and its associ-
ated z-transform C(z), here expressed as

Z c[n] 2" (1)

n=-—o0

With this definition ¢[n] can be recovered from C(z)
through the contour integral

1
cln] = 57 f C(z)z " Vdz; (2)
for all n = 0,+1,£2,.... In what follows, we shall con-
sider Equations (1-2) as comprising the transform pair
c[n]<C(2).



Consider now a conformal map Q(z), which we hope to
use as a mechanism for calculating a normalized cepstral
sequence ¢é[n] from the initial sequence ¢[n]. The bilinear
transform (BLT) is a conformal map well-suited to this
application; it can be expressed as

Qz) =

T 1l-az

Z—«

(3)

where « is real and |a| < 1. It is also possible to formulate
more general conformal maps which subsume the bilinear
transform, as indicated by
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where 3 and 7y are complex quantities, such that ||3]|, ||v]| <
1. The most salient characteristics of either map are that:

1. The unit circle is mapped back to the unit circle, since

Q) =1 ()
2. The inverse of Q(z) is easily calculated according to
Q7'(x)=QE" (6)

Equality (5) is indeed the reason that conformal maps such
as (3-4) are generally referred to as all-pass systems in the
digital signal processing literature [8, Section 5.5]; such
systems have uniform frequency response and thus “pass”
signals of all frequencies with neither attenuation nor am-
plification. Although they are not discussed here, it is pos-
sible to devise even more general conformal maps than (4)
which still retain these properties [5].

Using an all-pass transform (APT), we should like to
transform a cepstral sequence ¢[n] in some desireable man-
ner. Hence, let us define the z-transform C’(z) as the com-
position of Q(z) and C(z), such that C(z) = C(Q(z)).
Furthermore, we should like to associate with C’(z) a trans-
formed cepstral sequence &[n], where é[n]«<+C(z). More for-
mally,

dn] = % C(z) 2~ "D g (7)
-3 c[m]%j }[Qm(z)z_("“)dz (8)

where (7) follows from (8) through use of the series repre-
sentation (1) for C'(z) and subsequent manipulation of the
resulting expression. The linearity of the cepstral transfor-
mation effected by a conformal map is apparent from (8);
this linearity is a direct result of the analyticity of Q(z) on
the contour of integration, in this case, the unit circle.

We can exploit the aforementioned analyticity further by
forming the transform pair ¢[n]<>Q(z). For example, it is
straightforward to show that Q(z) as given in (3) admits
the series representation

Q) =
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From the final equality, the coefficients g[n] of the series
expansion are available by inspection. It is also possible
to obtain series expansions for B(z) and G(z) appearing
in (4), see [5] for details. Thus, upon defining the trans-
form pairs a[n]<>A(z), b[n]<>B(z), and g[n]<>G(z), the fi-
nal sequence g[n] will be given by

qn] = a[n] x bln] * g[n] (9)

where * is the convolution operator or Cauchy product [2,
Section 52]. Furthermore, the analyticity of Q™(z) can
be exploited to form a transform pair ¢ [n]<Q™(z) for
every m > 0, such that

™) = % f Q™(z) == dz (10)

In general, the sequences ¢(™[n] will have infinite extent
for both positive and negative values of n.

From (10) we deduce two things: Firstly, a simple appli-
cation of the Cauchy integral formula [2, Section 39] reveals
that ¢(©[n] is the unit sample sequence, such that

1.
1 )b
q"[n] {0;

Secondly, as Q™(z) = Q(z) x Q™ (z), the several se-
quences q(m)[n] for all m > 1 can be calculated based solely
on knowledge of ¢™)[n] via the recursion

forn=0

(11)

otherwise

¢"[n] = 4" V] x ¢ ] (12)

Hence, comparing (10) with the integral in (8), we discover
the desired cepstra are available from

(oo}

> clmlq™n] (13)

m=—00

As ¢[m] is even, it is uniquely specified by its causal por-
tion. Following the example set by others [8, Chapter 12],
let us make use of this fact to define the sequence z[n] as

0; n <0
zln]=¢c[0]; n=0 (14)
2c[n]; n>0

This latter sequence is the one most often associated with
the term cepstrum. In this case, ¢[n] can be recovered from
z[n] through the relation

cln] = 3(x[n] + z[-n]) (15)
In addition, further consideration of Eqn. (6) reveals that
] = ) (16)

q n]=gq

If we also define a sequence Z[n] as the causal portion of
¢[n], and substitute (14-16) into (13), we deduce that it is
possible to obtain Z[n] from

&[n] = Z Anm T[m] (17)
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Figure 1. Original (thin line) and transformed
(thick line) short-term spectra for a male test
speaker regenerated from cepstral coefficients 0—
14. The transformed spectrum was produced with
the BLT by setting o = 0.10.

where

q(m)[O]7 forn=0,m>0
0, forn>0,m=0

(18)
(™[] + ¢ =n])

Anm =

for n,m >0

are the components of the transformation matriz A =
{anm}.

Figure 1 shows the original and transformed spectra for
a windowed segment of male speech sampled at 8 kHz;
both spectra were generated from the first 15 components
of the original cepstral sequence. The operations employed
in calculating the transformed cepstra Z[n] were those set
forth in (17-18); the conformal map used in this case was
a bilinear transform with @ = 0.10. It is clear from a
comparison of the respective spectra that all formants have
been shifted downward by the transformation and that the
extent of the shift is frequency dependent.

3. PARAMETER ESTIMATION

Prior to speech recognition, the parameter o must be es-
timated individually for each speaker in a test or training
set. This is accomplished by taking a segment of speech
from a given speaker, generating transformed cepstra cor-
responding to a given warp factor and then calculating the
likelihood of the transformed cepstra using a simple Gaus-
sian mixture model (GMM). The likelihood assigned a set
X (%) of features from speaker s can be expressed as

LXD50) =3 "log > qiPi(i () (19)
i k

where the probability density function Pj of the k® mix-
ture component is multi-variate normal with diagonal co-
variance, g is the a priori probability of the k" compo-
nent, and ﬁgs)(a) is the i*" transformed feature. The opti-
mal warp parameter . is determined from the maximum
likelihood criterion:

a. = argmax L(X®); a) (20)

The transformed features {aﬁgs) (v« )} are subsequently used
for speech recognition. As there is no closed form solution
for (20), it is necessary to use a numerical search to find a..
Good results have been obtained with Brent’s method [9,
Section 10.2]. Estimation of optimal parameters for the
general all-pass transforms is discussed in [5].

Sankar and Lee [11] point out that if z{* and 2*) are
the original and transformed features respectively, then the
log-likelihood of the former is actually given by

log P(z'*)) = log J(a) + log P(2\*); A) (21)

where J(a) is the Jacobian of the transformation taking
z!* to #{*). The transformation in the present instance is
linear such that &* = Az*)| and J(a) reduces to

J(a) = det A(a)

Equation (21) implies the actual training set log-likelihood
can be expressed as

L'(X®;a) = Nlog J(a) + L(X®); )

where N is the total number of training samples and
L(X®; a) is defined in (19). The actual Jacobian can cal-
culated as the product of the eigenvalues of A; the latter
can be determined through use of the Schur decomposi-
tion [3, §7.1], which is formulated specifically to handle
unsymmetric matrices such as A.

4. SPEECH RECOGNITION EXPERIMENTS

The speech recognition experiments discussed below were
conducted using training and test material extracted from
the Switchboard Corpus. Of the complete Switchboard Cor-
pus, approximately 140 hours of data are set aside for sys-
tem training. In order to obtain fast turnaround, however,
a subset of the full training set was identified and used in all
speaker normalization experiments. This subset, dubbed
MiniTrain, is composed of approximately 200 conversa-
tions providing a total of 18.6 hours of speech material.
Approximately 100 speakers of each gender participate in
the MiniTrain conversations. The test set used in all ex-
periments was composed of 19 Switchboard conversations,
for a total of 18,000 words.

The features used for speech recognition were composed
of mel-frequency cepstral coefficients 1-12 along with first
and second order difference coefficients derived from these.
Parameters corresponding to short-time energy and its
first and second order difference were also estimated, for
a total feature length of 42. The mel-frequency cep-
stral coefficients were calculated using the waveform anal-
ysis tools provided with HTK, the Hidden Markov Model
Toolkit [12]. Cepstral mean subtraction was applied to the
features of the test and training sets on a per utterance
basis.

All speech recognition experiments were conducted using
a hidden Markov model (HMM) trained with cross-word
triphones. Each triphone in the model was composed of
three states, and each state was composed of nine Gaussian
components. The standard HTK implementation of the
decision tree algorithm was used to generated the state
clusters of the HMM. The final recognition was composed
of approximately 80,000 physical or triphone-level HMMs.



System Description || % Word Error Rate
Baseline 48.9
BLT Test-Only 474
BLT Test-Train 45.4
APT Test-Train 45.2

Table 1. Word error rates for lattice rescoring ex-
periments using BLT- and APT-based speaker nor-
malization.

Table 1 provides the results of an initial set of speech
recognition experiments conducted to ascertain the effec-
tiveness of bilinear and all-pass transform-based speaker
normalization schemes. The results were obtained by
rescoring a set of lattices using the appropriate normal-
ization scheme, where the original lattices were generated
using the un-normalized or baseline system. After estima-
tion of the appropriate speaker-dependent transformation
parameters, the features of the test set were normalized
“on the fly” using an appropriately modified version of
HVite, the HTK lattice rescoring tool. In the first ex-
periment, the HMM used for rescoring was trained on un-
normalized features, but speaker-dependent normalization
was applied to the features of the test set. This test con-
dition provided a reduction in word error rate (WER) of
1.5% with respect to the baseline. In the next experiment,
BLT normalization was applied to both test and training
sets. In order to achieve rapid experimental turnaround,
an HMM was trained on the normalized features using
the HTK single-pass training procedure [12] starting from
the conventionally-trained HMM and un-normalized mel-
frequency cepstra. Single pass training was followed by an
additional four iterations of conventional training using the
normalized cepstra. This test condition provided an addi-
tional 2.0% reduction in WER, with respect to test-only
normalization. In the last tabulated experiment, speaker
normalization on both test and training sets was performed
with a three-parameter APT. This condition provided only
a marginal gain over the best WER reduction using the
simpler BLT.

5. CONCLUSIONS

In this work, we have investigated the use of the bilin-
ear transform (BLT) as a means of speaker normaliza-
tion, which is undertaken to improve the performance of a
large vocabulary speech recognition system. We have also
derived a generalization of the BLT, dubbed the all-pass
transform (APT), and compared its performance to that
of the BLT. In a set of speech recognition experiments con-
ducted on test and training material abstracted from the
Switchboard Corpus, we recorded absolute word error rate
(WER) reductions of 3.5% and 3.7% for the BLT and APT
respectively beginning from a baseline system with a WER
of 48.9% .

A principal result of our theoretical development is that
the BLT and APT can be represented as linear transforma-
tions in the cepstral domain. The cepstral domain linearity
of these transforms implies the Jacobian likelihood normal-
ization factor, whose use is essential for accurate parameter
estimation, can be easily calculated for both. This linearity
also implies that the transforms in question can be applied

to the cepstral means of a hidden Markov model (HMM)
instead of the cepstral features used for speech recognition,
resulting in an instance of speaker adaptation as opposed
to speaker normalization. The use of the BLT and APT
in speaker adaptation will be the topic of future work and
publications.
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