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ABSTRACT
This work presents a method for reconstructing 3D  tongue
surfaces during speech from ultrasound data. The method
reduces the dimensionality of the tongue surface and
maintains highly accurate reproduction of local deformation
features. This modification is an essential step if multi-
plane tongue movements are to be reconstructed practically
into tongue surface movements. Earlier work (Stone &
Lundberg, JASA 99, 3728-3737, 1996) produced 3D
reconstructions of static tongue surfaces from dense sets
(60 slices) of 2D coronal tongue contours. Sparse data sets
(6 slices) from within the original dense set were used to
reconstruct 3D tongue surfaces, which were compared to
the 60 slice surfaces. The 6 slice sets of coronal images
were determined from an optimized set of midsagittal
points. The reconstruction procedure was done in an
identical manner to the dense data, but in 2D. Cross-
sectional slices of the tongue were measured at the
"optimal" midsagittal points, and used to reconstruct 3D
surfaces. These surfaces were compared to the dense
reconstructions. Errors and reconstruction coverage were
comparable to the 3D optimized sparse set, indicating this
was an adequate method for calculating a sparse data set
for use in reconstructing 3D surface behavior.

1. INTRODUCTION
The present study determined a minimal number,

or sparse set, of coronal tongue slices needed to
reconstruct 3D tongue surfaces (x,y,z) for 19 static
English sounds as a precursor to reconstruction of 4D
tongue surfaces (x,y,z,t). The goal of this study was to
specify optimal sparse sets (OSS) of 6 coronal
ultrasound slices to recreate the 3D tongue surfaces
reconstructed from dense sets of 55 slices.  The
optimization procedures discussed below were done
initially (not reported here) using the entire 3D data
set  of  coronal slices. Results for that data set can be
seen in the last row of Table 1.  However, it would be
foolish and impractical to collect 55 coronal slices on
each subject simply to find the 6 best slices. For this
paper, therefore, we present a variant of the original
method which uses midsagittal data to estimate the
best coronal slices for the sparse reconstructions.

There are two advantages to determining the OSS
from midsagittal contours.  First, every subject's OSS
will be different based on factors such as subject size,
or the surrounding vocal tract shape.  By collecting
midsagittal data first and running the optimization
program, one can determine and collect the optimal
coronal slices during the same recording session.  The
second advantage is that by concentrating on the
midsagittal contour, midline features (such as local
depressions and sharp changes in slope) are well
captured in the chosen coronal slices.

There is no question that tongue behavior in the
midsagittal plane cannot be extrapolated simply into
3D surface behavior.  We have seen motion patterns
in coronal slices that would not be extractable from
midsagittal data (cf. Stone, 1990).  However, these
3D reconstructions came from 6 coronal slices, which
covered about 83% of the original area of the tongue.
The location of the slices was determined from the
optimized midsagittal points.  The validity of that
process is being presented here. We have chosen an
extensive corpus of speech sounds, conservative error
criteria, and global optimization, to maximize the
accuracy of our reconstructions.

2. METHODS
2.1. Subjects and Speech Materials.

The subject was a 26 yo WF with a Baltimore,
MD accent.  Complete recording procedures and
subject information can be found in S&L, 1996.  All
the sounds of English that use the tongue (or their
cognates) were used: /L�,�H�(�%�$�&�R�8�X�)�*���V�

2�.�O�Q�1/.  The dense data sets consisted of from 38
to 55 coronal slices each one degree apart (Figure 1).
The OSS sets are represented by the 6 vertical lines
in Figure 1.

2.2.  Determining an OSS set of Coronal
Slices from Midsagitatl Slices:



   A sparse reconstruction contains just a few coronal
slices from the dense set of 55 coronal slices, so there
are many possible sparse sets one could collect. We
considered six slices because this was in fact
determined to be the most appropriate choice for
balancing data collection constraints and
reconstruction accuracy. The optimal slice set had to
be defined globally for all 19 speech sounds, even
though each sound had a different optimal set,
because the transducer is fixed during actual speech
production. There were two desirable properties used
in defining an optimal sparse reconstruction. The first
was maximal reconstruction coverage, i.e., the
percentage of the tongue surface measured in the
dense set of tongue slices that was covered by the
sparse set. The second was minimal error.
   A mentioned above, midsagittal data was used to
determine the OSS sets.  This was simulated on the
dense data set by extracting the midsagittal profiles
for the 19 speech sounds, and determining the
optimal set of points needed to best reconstruct the
global set of midsagittal profiles. The coronal slices
corresponding to the optimal sagittal points were
remarkably close to those selected by the 3D analysis,
and using those slices as the sparse set resulted in
minimal global data degradation, and improved
midline representation (Table 1).

Reconstruction        Source         Slices                      Worst   Average    %
Midsagittal
Contour
Reconstructions

6 Point
Sparse
Set

3,11,20,28,36,42 1.20 0.34 82.2

Midsagittal
Contour
Reconstructions

5 Point
Sparse
Set

3,11,20,28,36 1.20 0.36 74.4

3D Surface
Reconstructions

6 Point
Sparse
Set

3,11,20,28,36,42 1.85 0.36 82.2

3D Surface
Reconstructions

5 Point
Sparse
Set

3,11,20,28,36 1.85 0.38 74.4

3D Surface
Reconstructions

Coronal
Slice Set 4,10,21,28,36,42 1.80 0.39 83.2

Table 1: Five and six slice sets used in 3D
reconstructions with worst errors, average errors, and
percent of reconstruction coverage.

2.3.  Percentage of Reconstruction
Coverage

As the tongue moved forward and back in the mouth
during speech, the first and last measurable coronal
images varied widely, see Figure 1.  For any speech
sound, if the extremes of its measurable range were in

Figure 1: The range of measurable slices for each of
the data sets and vertical lines showing the location of
the optimal coronal slices

the sparse data set, the sparse reconstruction would
cover the same range as the dense data set. If not, the
sparse reconstruction would be truncated at the most
extreme slice that did lie within its measurable range
(see Figure 1). Reconstruction coverage was the
sparse surface reconstruction area in degrees divided
by the measurable dense surface area in degrees.
   Reconstruction coverage had to be balanced against
data collection considerations. Since the subject must
repeat the speech corpus once for each coronal slice,
the fewest number of slices was preferred. Sparse sets
containing from 3 to 10 slices were analyzed for
maximum possible percent coverage. The benefit
gained from increasing the number of slices
diminished beyond six slices and so 6-slice sets were
optimized.  In addition reconstructions made from 6-
point sets (i.e. slices whose location was determined
by optimizing midsagittal points) and 5-point sets
(the 5 anteriormost slices) were evaluated.
.
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2.4.  Error Analysis of the Six Slice Set
   The error cost function was a measurement of both
the worst and average errors. An interpolating b-
spline surface was fit to the sparse set of surface data
points. The resulting tongue surfaces were smoother
than the dense data set, and might lose detail (Figure
2). The dense reconstruction was compared to the
sparse one using a 2D grid of vertical lines that
intersected with the tongue surface. For each grid
point in the dense data set reconstruction, the closest
surface point was found for the sparse reconstruction.
The 3D distances between these point sets gave a set
of error responses. From these, worst and average
errors were determined for each of 19 speech sounds.
   We defined optimal error as minimizing an error
term composed of worst error, average error, and
percent coverage. This error term was considered
over the reconstructions of all 19 speech sounds,
defining a global optimum. To quickly find a good
global optimum, a technique called simulated
annealing [5] (Kirkpatric et al., 1983) was used. The
simulated annealing process seeks a global
optimization by allowing random movements in the
search space of all possible 6 slice sets.

3. RESULTS
   The goal of this study was to reduce the
representation of the tongue surface to a few key
slices . This procedure can be developed further to
collect time-varying data at each slice for use in 4D
reconstructions (x,y,z,t).
  Error results for reconstruction of the midsagittal
profiles from 5 or 6 points, and the reconstruction of
the 3D surfaces from 5 or 6 slices appear in Table 1.
As ultrasound has a measurement error around 0.5
mm, the sparse data set was a very good
approximation. This indicated that accurate
reconstructions could be made from time varying
ultrasound with as few as six slices (at the appropriate
positions).

3.1.  Global Characteristics of the
Reconstructions

   For each of the sparse sets, global measures of
reconstruction accuracy were calculated. Table 1
shows the OSS data derived from 5-point, 6- point,
and 6-slice source sets, with their global
reconstruction errors. Errors, surface coverage, and
cost functions were calculated for the entire set of
surfaces. The results indicated that the best OSS was
the 6-point set. Only percent coverage was degraded
from the 6-slice set optimum. The 5-point set
introduced a further reduction in percent coverage

due to the loss of posterior surface area. In fact, use of
midsagittal points as a source set tended to produce
better reconstructed surfaces than the coronal set, in
many cases, because midsagittal points focused the
optimization algorithm on midsagittal features. Thus
local depressions, or "dimples", as seen in /l/ and /$/,
and steep slopes, as seen in /i/ and /*/, were better
captured using the midsagittal source sets. Increased
error was seen instead at the surfaces' extreme edges
(the least important areas) and also in areas of left-to-
right asymmetry (as midsagittal optimization ignores
and thus may diminish asymmetries).

3.2. Preservation of Local Features
   In addition to global statistical error measurement,
preservation of important physical features was given
weight in determining the error cost. The sparse
source set was optimized to minimize local and global
3D reconstruction error. The error cost used in the
minimization was selected to preserve as many local
features as possible. The three "local" features
considered were left-to-right asymmetry, abrupt
changes in slope, and local depressions or “dimples.”
   Left-to-right asymmetry was diminished in the
sparse reconstruction when the selected slices were
not in maximally asymmetric regions. Of the three
features, asymmetry was the least resolvable. A
source set determined by midsagittal points cannot
account for left/right differences in shape or motion.
Figure 2 exemplifies this loss.
   The second and most easily resolved local feature
was the local dimple seen in low back vowels and /l/
(Stone & Lundberg, 1996, Figures 5, 6). The use of
the 5- and 6-point source sets instead of the 6-slice
source set greatly improved resolution of centrally
occurring depressions in the 3D surfaces as they were
key features in the midsagittal profile as well.
   The third local feature was abrupt change in slope.
This feature was particularly evident for /i/ which had
an arched tongue in the front, and abruptly became
grooved in the back. In addition, the sparse tongue
surface was very short. Thus, initial global
optimization using 5 coronal slices selected only 3
within the measurable range for /i/. As a result, the
surface was smoothed excessively and both maximal
curvature and slope steepness were reduced. The use
of the 5- and 6-point source set resulted in four slices
for even the shortest tongue surfaces, and captured
the grooves very accurately.

4. DISCUSSION
   This study was able to reconstruct 3D tongue
surface shapes using as few as five or six coronal



slices. The best slice selection used an optimized set
of midsagittal points.
   Two important issues are involved in choosing a
sparse data set for 3D reconstruction. The first issue
is reconstruction accuracy of the 3D surface and
eventually motion. Global reconstruction was
optimized by minimizing the average and the
maximum error. The largest maximum error for all
19 sounds was 1.85 mm.  The second issue is finding
the best 6-point source set for each subject. Choosing
coronal slices by optimizing midsagittal points acts to
normalize the technique for each subject.  Without
this, results cannot be generalized across subjects and
validity of the method is breached. Coronal images
are collected at the subject’s optimized point locations
and reconstructed as described earlier. The
midsagittal data can be used in the reconstructions as
well.
  Local reconstruction features such as asymmetry,
local depressions, and steep slopes were considered in
the error analyses, because these are among the most
important features of surface shape. The first feature,
tongue asymmetry, is more prevalent in tongue
motion than in static data and so will be even more
important for future studies. When the slice selection
is based on midsagittal points, asymmetries can not
be taken into account, since no lateral information is
available. However, left-to-right asymmetries extend
across a fairly long region of the lengthwise tongue,
and therefore, should be captured by one or more
coronal slices the worst symmetry error in these data
appears in Figure 2.

Figure 2: Reconstructions from a dense set of slices
(left), and from a 5 slice set (right) for /L/ and the
distance vectors between them.

  The second feature, dimples, were visible in this
data set for non-high back vowels and /l/. The present
3D reconstructions captured dimples very accurately
because dimples occur at midline and the 5- and 6-
point source sets maximized their representations.
   Accurate representation of steep slopes was the
third feature examined in the reconstructions. Front
raised sounds (e.g., high front vowels) tended to be
short in length with a deep posterior groove defined
by a steep slope midsagittally and laterally.
Anteriorly, the tongue surface was high and flat, or
even arched. Therefore, a sharp change in slope in
the midsagittal profile separated the anterior arch
from the posterior groove. Choosing a slice too far
from the change caused a serious underestimation in
the slope magnitude and origin point.  This problem
was resolved adequately by using 6 slices, which
allowed a shorter distance between slices, and
included at least 4 slices within the body of the
tongue for the short, front-raised vowels.

5. SUMMARY
  Three-dimensional tongue surfaces were
reconstructed accurately from 5-6 coronal slices that
were selected using an optimized set of midsagittal
points. Overall errors were minimal and located in
regions of lesser importance, such as the lateral
edges. Local features of importance such as
depressions, asymmetries, and changes in slope were
captured well. Reconstruction accuracy was within 2
mm maximum error. These sparse representations
successfully reduced the dimensionality of the tongue
while retaining essential local features. Moreover,
these representations did not impose an a priori
model on the tongue's shape or motion. In future
studies, time-varying 2D ultrasound data collected at
these six slice locations are expected to provide
adequate reconstructions of 3D tongue surface motion
(4D).
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