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ABSTRACT

Large vocabulary automatic speech recognition might assist

hearing impaired telephone users by displaying a transcrip-

tion of the incoming side of the conversation, but the system

would have to achieve su�cient accuracy on conversational-

style, telephone-bandwidth speech. We describe our develop-

ment work toward such a system. This work comprised three

phases: Experiments with clean data �ltered to 200-3500Hz,

experiments with real telephone data, and language model de-

velopment. In the �rst phase, the speaker independent error

rate was reduced from 25% to 12% by using MLLT, increasing

the number of cepstral components from 9 to 13, and increasing

the number of Gaussians from 30,000 to 120,000. The result-

ing system, however, performed less well on actual telephony,

producing an error rate of 28.4%. By additional adaptation

and the use of an LDA and CDCN combination, the error rate

was reduced to 19.1%. Speaker adaptation reduces the error

rate to 10.96%. These results were obtained with read speech.

To explore the language-model requirements in a more real-

istic situation, we collected some conversational speech with

an arrangement in which one participant could not hear the

conversation but only saw recognizer output on a screen. We

found that a mixture of language models, one derived from

the Switchboard corpus and the other from prepared texts, re-

sulted in approximately 10% fewer errors than either model

alone.

I. Introduction

Advanced speech recognition technologies and a�ordable com-

putation make it feasible to explore automatic speech recogni-

tion as an aid for hearing impaired people conversing over the

telephone. Just imagine the following setup: the incoming tele-

phony voice stream is fed into a PC-based speech recognition

engine, and the transcription is displayed on a screen. The

hearing impaired user looks at the displayed text and com-

municates via telephone with people without using today's

cumbersome TDD or TTY system. Although current error

rates on the ARPA Switchboard and Broadcast News tasks

may seem too high for practical applications, we believe that

a speaker-dependent telephony system can provide acceptable

performance if users are cooperative and the task domain is

suitably structured. In the future, additional technologies may

help in this application, for example, speaker identi�cation for

automatic selection of speaker-dependent models, and speech

synthesis for the impaired user who is not able to talk.

In our LVCSR system, words are represented as sequences

of phones. Each phone, modeled by a three-state HMM, is fur-

ther divided into 3 sub-phonetic units with context-dependent

tying[2]. For each sub-phonetic unit, a decision tree is con-

structed from training data and the terminal nodes of the tree

represent collections of instances of these classes grouped ac-

cording to context. These context-dependent leaves are mod-

eled by a mixture of Gaussian pdf's with diagonal covariance

matrices. In our studies, the systems were built using ap-

proximately 2500 leaves with 30K and 120K Gaussians, ap-

proximately 12 and 60 Gaussians for each leaf, respectively.

Di�erent mel-cepstrum based feature spaces were used for the

classi�er, namely, 9 dimensional cepstra with normalized en-

ergy, 13 dimensional mel-cepstra (with C0) with their �rst and

second order di�erences, and the same cepstra with several

di�erent feature space transformations. A weighted N-gram

(bigram or trigram) is used to compute the language model

probabilities. The signal processing of the feature space and

language modeling will be discussed in detail in later sections.

The HMMs were trained by 40K in-house collected sen-

tences, and the test set is an in-house o�ce correspondence

script, which includes 61 long sentences, with 1117 words. The

wideband test set was collected through headset microphones,

mainly ANC-500, and the telephony data was collected live

through both local and long distance telephone networks, us-

ing several di�erent telephone sets.

II. Acoustic Modeling on Desktop System

Prior to this study, a preliminary telephone band desktop sys-

tem had been built using WSJ0 and WSJ1 training sets. In

that system, the feature vectors were derived from 9 dimen-

sional mel-cepstra with normalized energy, and their �rst and

second order di�erences, using a Cepstrum Mean Normaliza-

tion (CMN) scheme. The error rate on 10 speakers was ap-

proximately 25%.

A narrow band desktop system using clean, close-talking

microphone data was then re-developed using in-house train-

ing data. This data was originally sampled at 16 KHz or

higher, but was decimated to 8KHz and band-pass-�ltered to

200-3500Hz.

Visual comparison of spectrograms reconstructed from 9 di-

mensional and 13 dimensional mel-cepstra suggests that there

is useful information in the additional four cepstral compo-

nents. When we tested both 9-dim CMN and 13-dim CMN

in our recognizer, we found that the latter produced a relative



Sampling 13 dim CMN 9 dim CMN
Rate 16KHz 11KHz 8KHz 8KHz

Error Rate 12.7 14.6 16.8 18.0

Table 1: Error rates on di�erent sampling rate.

error rate reduction of approximately 7%. (Table1) Although

the computation of Gaussian densities in 13 dimensions is more

expensive than in 9, the labeling accuracy with 13 dimensions

is signi�cantly better. This results in reduced searching time

in the decoder, so that there is no signi�cant increase in the

overall computation time.

To study bandwidth e�ects, tests were conducted with sam-

pling rates of 16kHz, 11kHz and 8 kHz, corresponding to

Nyquist frequencies of 8 kHz, 5.5 kHz, and 4 kHz, respec-

tively. Thirteen-dimensional cepstra (with C0) and their �rst

and second order di�erences were used as feature vectors for

these three systems. The same test set was downsmapled to

each of these frequencies. The error rate increased from 12.7%

in the 16KHz system to 16.8% in the 8KHz system. (Table 1)

Approximately 2% absolute degradation was seen for each of

these bandwidth reductions.1

Other signal processing schemes were evaluated in an e�ort

to improve the performance. These are described below.

Linear Discriminant Analysis(LDA)[7] with nine concate-

nated frames of 13-dim cepstral vectors serving as input, ro-

tated and reduced to a 39-dimensional output vector, resulted

in a decrease of the error rate from 16.8% to 15.2%, which is

a 9% relative improvement.

The intent of LDA is to transform the feature space to a

coordinate system in which useful information is concentrated

in a smaller number of coordinates and where the coordinate

values are uncorrelated. The latter condition is helpful if the

pdf's are to be modeled by Gaussians with diagonal covariance

matrices. LDA analysis, however, looks only at the global

average of the within-class covariance matrices, and ignores

di�erences between them.

A more rigorous technique has been recently described for

constructing a linear transformation to minimize the loss that

results from constraining the covariance matrices to be diag-

onal [4]. We tested this Maximum Likelihood Linear Trans-

formation (MLLT) using the same 117 dimensions (9 frames,

13 dim each) as input, and again transformed them to a 39-

dimensional output vector. With this technique, the error rate

dropped to 12.0%.

To explore performance as a function of the number of Gaus-

sians, we built two systems, one with 120K Gaussians, (60-

Gaussian mixture per leaf on average), and the other with 30K

Gaussians (12 per leaf), using each of the above described sig-

nal precessing schemes. The results are summarized in Table2.

As a consequence of all of these techniques, the error rate

1
Special thanks to colleagueDr. Y. Gao who provided the wide band

systems.
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Number of 9dim 9 dim 13 dim 13dim 13dim
Gaussians CMN CMN CMN LDA MLLT

30K, SI 25 18 16.8 15.2 14.5
120K, SI 16.8 15.3 13 12

30K, SD 10.49 9.78 9.4 9.0

Table 2: Error rates on desktop, clean 8KHz Speaker Indepen-
dent (SI) and Speaker Dependent (SD) systems.

Number of CMN LDA LDA+CDCN telephony
Gaussians adapted
30K, SI 28.4 26.2 21.2 22.5

120K, SI 25.6 19.1 20.6

30K, SD 13.14 11.68 10.96 11.04

Table 3: Error rates on telephony Speaker Independent (SI)
and Speaker Dependent (SD) systems.

dropped from 25% to 12%.

The speaker dependent systems were then built and the re-

sults are listed at Table2.

III. Acoustic Modeling on Telephony Systems

Speech signals in telephone applications are inevitably vulner-

able to the channel distortion and additive noise during trans-

mission. Unlike the regular narrow-band applications, the dis-

tortion and noise in the telephone data can change from one

recording to another signi�cantly.

For baseline evaluation, the desktop system was tested with

real telephony. (The test data was re-collected over telephone

with the same number of speakers). As expected, considerable

degradation occurred: the error rate jumped to 28.4%. The

LDA system was not signi�cantly better because the rotation

matrix had been calculated from training data (clean speech)

which is very di�erent from telephony speech. To improve the

performance, two approaches were tried. First, the system was

adapted using a limited amount (1/7 of training data) of tele-

phony data. The system was �rst adapted by MLLR[5] and

then Gaussian smoothing, a scheme similar to MAP adapta-

tion. The error rate came down to 20.6% (Table3). Feature-

based signal processing techniques were then further explored.

A. The CDCN Algorithm

Since signal distortion and noise in telephone data can change

from one recording to another, it can be very bene�cial to en-

hance signals in feature space so that they appear to come from

a more uniform acoustic condition. In this case, algorithms

that can facilitate the simultaneous joint compensation for the

e�ects of channel distortion and additive noise are highly de-

sirable.
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Figure 1: A model of environmental distortion used in CDCN

To this end, the Codeword-Dependent Cepstral Normaliza-

tion (CDCN) algorithm developed at CMU [1] is explored in

this paper. The CDCN algorithm assumes the model of envi-

ronmental degradation shown in Fig. 1. The power spectrum

can be written as in Eq. 1

Pz(!) = Px(!)jH(!)j2 + Pn(!) (1)

and the corresponding cepstrum is written as

z = x+ q+ r(x;n;q) (2)

where the perturbation vector q = IDFT [ln(jH(!)j2)] rep-

resents the e�ect of linear �ltering and the correction vector

r(x;n;q) = IDFT [ln(1 + e
DFT [n�q�x])] (3)

represents the joint e�ect of linear �lter and additive noise.

Based on the structural knowledge of degradation model,

CDCN attempts to solve two independent problems. The �rst

problem is that of estimating the environmental parameters,

q and r(x;n;q), characterizing the contributions of additive

noise and linear distortion. This is accomplished by using

EM techniques to compute the ML estimation. The second

problem is estimation of the un-corrupted observation vector

x given the observed vector z and the estimated environmental

parameters q and r(x;n;q). MMSE parameter estimation is

used for this task. In e�ect, these two operations determine

the values of environmental parameters. When applied in an

reverse fashion, they produce an ensemble of compensated vec-

tors that best match, in the ML sense, the observed vectors in

the testing environment to the locations of VQ codewords in

the training environment, as shown in Eq.4

x̂i =
X

k

fi[k]
�
zi� q̂� r

(j)[k]
�

(4)

where fi[k] is the weighting constant for Gaussian mixture

k at frame i.

By applying CDCN, the acoustic features from telephony

utterances were mapped to a more uniform space, and LDA

was then applied to further optimize the feature space. The

LDA transformation matrix was calculated using the training

cepstra after CDCN mapping. The input and output acoustic

feature vectors were kept as 117 and 39 dim, respectively. The

CDCN+LDA system can dramatically reduce error rate from

28.4% to 19.1% (Table 3) without using a single telephony

training sentence. In addition, a telephony system using more

than 100 hours of telephony training data from di�erent tasks

was built later, and the results were comparable to this tele-

phony CDCN+LDA system.

The speaker dependent systems were built and the results

are listed at Table 3. Consistently, CDNC+LDA system has

the best results.

The CDCN algorithm has the advantage that it does not

require a priori knowledge of the testing environment. Al-

though it is typically implemented on a sentence-by-sentence

basis, it can be accomplished in a modeless fashion for real-

time applications[6]. Since it does not assume acoustic simi-

larity among the test data, CDCN is ideal for applications in

which acoustic condition changes from sentence to sentence,

such as in telephony applications.

IV. Language Modeling

The language model for the proposed application would ideally

be trained and tested on spontaneous conversations recorded

during actual use of the system. In the absence of such a com-

plete system, we investigated the use of surrogate text sources

to obtain an approximation to the desired language model.

The designer of any language model for conversational speech

is faced with the di�culty of obtaining su�cient amounts of

representative text. Hundreds of millions of words are typically

necessary to compute adequate statistics. Although machine-

readable text corpora of this order of magnitude exist, they

consist largely of news reports, literary works, legal, techni-

cal, and business correspondence and similar "written" sources.

Currently available spontaneous conversation corpora tend to

be much smaller. If a relatively small amount of text is avail-

able from a source that closely approximates the target appli-

cation, and larger amounts are available from a source that is

less similar to the target, then it may be possible to construct

language models from both sources and combine them to ob-

tain a better approximation to the target than either model

alone [3]. Let p1 be the probability for some word predicted by

the �rst model, and p2 the probability from the second model.

The �rst su�ers from random error because it is estimated from

a small sample, the second su�ers from bias because its sample

was taken from a di�erent population. A linear combination

of the two,

p = wp1 + (1 �w)p2 (5)

represents a smoothing of the noisy �rst model toward the less

noisy but biased second model. Such a combination may pro-

duce a lower error rate than either original model alone. To

optimize the value of the weight w, however, it is necessary

to use an additional corpus which is more representative of

the target application than is either of the other corpora. We

started with a 2-million word corpus taken from the Switch-

board Corpus, consisting of spontaneous telephone conversa-

tions on somewhat restricted topics. We smoothed this with a

much larger corpus of over a hundred million words of prepared

text including news, o�ce correspondence, and literary works.

Finally, to test the performance of the resulting mixture mod-

els, we generated a small amount of text in an arrangement

intended to simulate the target application. A one-way tele-
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Figure 2: Error rate vs. language model mixing weight for
spontaneous speech intended for a recognizer.

phone connection enabled one participant, side A, to hear side

B, but side B did not hear the speech of side A. That speech

was, instead, fed into a speech recognition program and side

B only saw the output of this program. Both sides of the

conversation were recorded at a 4.5-KHz bandwidth for later

o�-line processing. The three corpora di�ered noticeably in

style. For example, the probability of a sentence beginning

with "I" was much higher in the Switchboard corpus than in

the large prepared-text corpus, as was the frequency of conver-

sational phrases such as "you know". The test corpus recorded

in the simulated hearing-impaired situation contained requests

for repetition when the recognizer made errors, which did not

occur in either of the training corpora. The graphs below show

the word error rates for the two sides of the conversation for

various values of the mixing weight w. The value 1 means that

only the Switchboard model was used, and 0 means that only

the large, prepared-text model was used. Side A, the "hear-

ing" participant, was aware that the other side, the "hearing-

impaired" participant, was using a speech recognition system.

Side A, therefore, tended to speak in a deliberate manner ap-

propriate for automatic speech recognition. Side B, however,

knew that the other participant listened directly, without the

aid of a recognizer. Side B, therefore, spoke in a more casual

style. Both sides were recorded, however, and then processed

through a speech recognizer later o�-line to get the results

shown in the �gures. The error rates clearly re
ect the di�er-

ence in speaking styles. In both cases, nevertheless, mixtures

of the two language models produced lower error rates than

either corpus alone.

It may be hoped that by collecting data more representative

of the actual application, and possibly restricting the topics in

some way, the error rates could be pushed down further.

V. Conclusion

Helping hearing-impaired telephone users by means of auto-

matic speech recognition is a challenging opportunity. The

conditions are adverse: limited bandwidth, variable channel
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Figure 3: Error rate vs. language model mixing weight for
spontaneous speech intended only for a human listener

characteristics, spontaneous conversational speech. Concerted

application of state-of-the-art algorithms including adaptation

to speaker and channel, together with a large set of acoustic

prototypes, can bring acceptable accuracy within reach for read

speech - we achieved a word error rate of 10.96%. It is also

noteworthy that although other signal processing methods suf-

fered signi�cant loss when going from clean band-limited data

to real telephone data, CDCN processing was able to compen-

sate for telephone channel distortions, making it unnecessary

to train on actual telephone data.

Although spontaneous conversation poses additional di�cul-

ties, these can be at least partly solved by improved language

modeling. Design of the dialog to minimize LM perplexity, and

cooperative users aware of the system's requirements should

further improve accuracy.
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