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ABSTRACT form of this conditional distribution depends upon the character-
istics of the the functional transformation. dfhas a prior dis-

Earlier work in parametric modeling of distortions for robustiribution P(#), then instead of estimating we smooth out the
speech recognition has focussed on estimating the distortion psonditional distribution averaging over the uncertainty of the pa-
rameter using maximum likelihood and other techniques as @meter to obtain the predictive distribution:
point in the parameter space, and treating this estimate as if it is
thetrue value in a plug-in maximura posteriori(MAP) decoder. P(Y|Ax) = / P(Y |8, Ax)P(0)dd. 1)
This approach is deficient in most real environments where, due to 0co
many reasons, the value of the distortion parameter varies signif- . o
icantly. In this paper we introduce an approach which Combine§|nceP(Y|Ax) is theactual distribution of the observed values

the power of parametric transformation aBdyesian prediction Ohf Y, |t(;:_aq prde_dlc_tb vv_hat vlalule§( cabn tarI:e andhhenﬁ_e is called h
to solve this problem. Instead of approximating the distortion pa_t- e predictive distri l'JtIOI."I.[ ],' tcan be shown t att_ IS approac
more robust, and it minimizes the overall error given the prior

rameter with a point estimate, we average over its variation, thi ibution 121, A predicti h | qf
taking into consideration the distribution of the parameter as Weﬁj.IStrI ution [2]. A predictive approach was recently proposed for

This approach provides more robust performance than the Corrp_bust classification in [3]

ventional maximume-likelihood approach. It also provides the soUsuaIIy, if the prior has a sharp peak, i.e., if the testing environ-

lution that minimizes the overall error given the distribution of theme tis not widely varying, and when reasonable amount of data is

p;rarpeter. Wef pt);esent dr_ets_ults to demr? nstrate the robustness &0Silable to obtain the ML estimate accurately, there is not much
eliectiveness ot the predictive approach. difference in the performance between the predictive and ML ap-
proaches since the final predictive distribution can be approxi-
1. INTRODUCTION mated in terms of the conditional distribution calculated at the

ML estimate: fé‘e@ P(Y|9, AX)P(G)dG ~ ﬂP(Y|9ML, Ax)

Ir? many speech recognition appllcapons_, th_e_ distorting mech?ﬂ/e shall see from our experiments that the advantage of the pre-
nism that degrades performance varies significantly, even dunrfﬁ
e

. . . ctive distribution is apparent when there is usually a wide dif-

a single utterance (e.g. wireless channel). Also while model|- - . .
. . . ) . . rence between the training and testing conditions, and that the
ing such distortions, the choice of model is often inaccurate (e.g. - ' .

) ) . - . o erformance of the predictive approach is good even in the pres-
modeling a varying channel distortion as a single bias in the cep- ) )

. S " —ence of small amounts of data. This technique can be used for

stral domain). In these situations the traditional compensatign L o
oth adaptation (i.e., when limited amount of data from the test-

schemes, where the distortion is modeled as a nuisance param . . . . . :
|n§ environment is available in advance) or compensation (i.e.,

eter and then estimated as a single point in the parameter spac en the process is performed using the testing data only)
do not adequately capture the characteristics of the distortion. The '
usual maximum likelihood estimators (MLEs) used in such techrpe gtens in our predictive approach are (1) determine the func-
niques are only asymptotically consistent (i.e. the variance of thg, .4 form of the prior, (2) estimate the hyper-parameters, (3)

estimates match the actual variance only as the amount of d%pute the predictive density, and (4) use it in a plug-in MAP
used for estimation is unlimited), hence with limited amount ofjocoder to compute the word sequence.

data, such estimates are not robust. These techniques treat the
estimatedparameter as it'actual value and use it in a plug-in 3. DETERMINATION OF PRIOR
maximuma posteriori (MAP) decoder without considering the

modeling errors or the uncertainty in the estimation. DENSITY

An important element of the predictive approach is the prior prob-
2. BAYESIAN PREDICTION ability distribution over®, the parameter space. Such a prior

In this paper, we solve this very important problem usjig- s_hould (1) have a functional form such th_at the integral in Equa-
dictive compensatignwhich is a Bayesian solution to the point tion 1 can elt_her have a closed form sqlutlon or have a reasonably
estimation problem. It is a novel combination of two powerfulgOOd approximation, and (2) Pe con3|§ter_1t with the data and_the
approaches in the area of robustness - (1) the parametric transf (_)de_ls an_d adequate_ly quantify the prior information concerning
mation approach [5, 4] and (2) Bayesian prediction [1, 2\, the distortion mechanism.

the model of the test daf¥ is related to the trained moddlx
through a functional distortiohy = Fy(Ax), thenP(Y |6, Ax)
is the conditional distribution of the data given the parameters (ﬁ
the transformatiory, wheref € ©, the parameter space. The

The shape of the prior (and the subsequent calculation of the pre-
ictive distribution) is determined by the choice of the functional
ansformationFy (). The form of Fy(-) is chosen by examin-

ing the data. In our paper we start with a very simple functional



model of the distortion which transforms the means of the mod&imilarly
using an additive biasyy = px + 6, whereX is the undis- lim U% = g2 ©)
torted data ang represents the mean.Xf andé are independent T— o0
processes andl’ is modeled by a hidden Markov Model (HMM) HenceZ can be a reasonably good estimatofand given suf-
with Gaussian mixture states such that the distribution of the dafgsient data, the histogram of, = (y: — z), t = 1,..,T
given the state, and the mixture:; is P(z¢|s: = s,c: = ¢) =  should closely approximate its prior. From the histogram we
N (pse, %), then the conditional distribution of the test data iscan hypothesize a parametric functional form of the prior and es-
P(ylse = s,¢0 = ¢,0) = N(pse + 0, 0%,). The parameters of timate the hyper-parameters. Figure 1(a) shows this histogram
the distribution of¢ are called thehyper-parametersf the pre-  for the first coefficient estimated using 20 sentences spoken over
diction. a telephone line. We can determine that the histogram is bi-
modal, and this bimodal nature can be captured by constructing
yriors for speech and silence segments separately (Figures 1(c)
d (d)). The two priors are asymmetric Laplaciafis (.. () =

One way to tackle the problem of prior selection is to use an e
pirical Bayes approach, where the priors are computed from t

available adaptation data. First we assume that each componeata,
of 6 is independent of each other, i.e. the distortion affects eac%}‘jtl)*}o‘2
cepstral coefficient of the data independently. Then the prior fore -
each component of th® dimensional vector is computed sepa-

{exp(—a1|f—m|)u(—(6—m))+exp(—az|f—m|)u(f—
a1, a2 > 0, wherem is the mode of the distribution and
=m+ 2 — L is the mean.

rately, and then the final prior is calculated as the product of thethe conditional distribution is a Gaussiai(ux + 6, 5% ) (or

marginal priors:P(#) = IT_, P(¢;). Here, the parameter space 3 mixture of Gaussians) and the prior is an asymmetric Lapla-
is ©® c RP. Through the rest of the paper, we will talk éfas

though it is a single parameter without the loss of generality.

Prior Computed Directly from Stereo Data: To study the na-

ture of the distortion and to obtain preliminary information aboug
w

the shape of the prior, we used a database where utterances

recorded simultaneously over a close talking microphone (“cleal
data) and over a dial-up telephone line (“noisy” data). Such
database is called a “stereo” database. Since such databasesar

cian given before, then we can show that the predictive distribu-
tion is also an asymmetric Laplacian (or a mixture of asymmetric
Laplacians) with each component having a modg.at and the
mean atux + pg. Even though such flat-tailed priors are con-
idered robust [1], there are many problems with this approach -
@L'ﬁmen the mode of the predictive distribution is not equal to its

hean, the MAP decoder runs into problems, and (2) we know that

fhis marginal does not match the distribution of our speech data.
Etep around these problems, we can choose the shape of the

impractical in real gpphcanons, this procgdure was intended as;ﬁior such that the generated marginal is consistent with our prior
tool for understanding the nature of the prior.
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Figure 1: Histograms of bias computed from 20 sentences using (a)
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knowledge of the data. We discuss this issue next.

3.1. Using Marginal Distribution to Deter-
mine Priors: Minimum Divergence Ap-
proximation

One common way to determine the functional form of the prior is
from our knowledge of the marginal distribution. Since we know
that a hidden Markov model with Gaussian mixture distribution
is a good model of speech for both the margiaati the condi-
tional distributions, we can chose the conjugate prior of the con-
ditional distribution to model our prior. In our case, that would
be a normal distribution. We can determine the hyper-parameters
of the normal distribution such that th@illback-Leibler informa-

tion divergencd?2], a standard measure of dissimilarity between
distributions, is minimized between the Gaussian and the asym-
metric Laplacian. This is also called the maximum-entropy so-
lution [1]. The divergence between two distributiofis, .. (6)
andN (u, o?) is defined aFZ{log(L/N'}) whereE{} is the ex-
pectation taken over the distributiah After eliminating terms

not containingu ando, the divergence is equal to:

stereo data (b) without stereo data (c) for silence segments only (d) for

speech segments only.

Consider the functional transformatidn = X + Z. Given a

stereo database with ddtc1, y1), ..., (zr, yr)), we can see that

the limit of the estimated mean &f is

(LN = ~Blogo} - B{U Dy (a)

Setting the derivatives to zero provides

oD
” WZO = p=E{f}=pand (5)
L . 1 _ _
Jim 2= lim 7} (= we) =iy =i = (2) D _y & P=p{e-p=ck  ®

t=1

o



Thus the normal distribution is chosen such that its mean and varecorded separately over the telephone line (TEL) for testing. A
ance are equal to the mean and variance computed from the asy88-dimensional feature vector (with 12 LPC-derived cepstral vec-
metric Laplacian mentioned before. tors, 12A and 12A A coefficients A and A A energy) was used

for recognition. Only the 12 cepstral coefficients were used for
The choice of the conjugate prior makes the computation in Equgrior determination in this paper.

tion 1 quite simple. (It is considered that the choice of conjugate

prior is not necessarily robust. But if the likelihood is concenRecognition results are provided for two mismatch cases: (1)
trated in the center portion of the prior, then the use of the naturdls;»r models used with TEL data.(2)xr¢ tested on TEL data.
conjugate will be reasonably robust [1].) If the conditional disdn each of these cases, either a single prior (or a single ML bias
tribution is given asV (ux + 6, 0% ) and the prior isV'(ue, 03),  value) is computed for the entire data (this case is referred to as
then the marginals are computed to/8&px + pe, 0% + 03).  S0) or separate calculations are done for speech and silence seg-
The hyper-parameteys ando; can be determined from the data ments (this case is indicated as S1).

1 T 2 1 T 2
asug :—Zz 2zt andoy = TZ= (2t —po)”.
T Tt = Tables 1 and 2 show results for predictive compensation i.e., when

3.2. Unsupervised Approach to Hyper- only the test data and the trained models are available and the tran-
parameter Computation scriptions are unknown. One sentence is used for compensation

in all the following tables.
Computing the prior from the stereo data is not robust and highly

impractical. If X = (z1,..,zr) andY = (y,..., yr) are mod- Asry-TEL Baseline: 36.7%
eled by HMMs, the ideal alternative would be to use the sequence Unsupervised
of means corresponding to each mixture component that gener- Predictive ML
ated the data i.e(ux;,, ..., px5) and (uy;, .., gy ). Unfortu- S0 54.4 45.9
nately such a sequence is not available to us because we neither S1 54.4 46.2

know the distribution o¥” nor have access to the training dafa

But |f we are givemX then we can es’[imate ﬂrmst ||ke|y gener- Table 1: Performance When SIM mOdels and TEL data were Used
ator sequencéux,} ¢ = 1,...,T by performing a forced align- for compensation

ment using the MAP decoder and the transcriptions estimated

from the recognition output. We can now defifie= Y — ux and

we can use the earlier method to plot the histogram. This method Anrc-TEL Baseline: 79.6%)
should give a more robust estimate of the prior provided that the Unsupervised
mismatch between the models and the data is not too severe. Fig- Predictive ML

ure 1(b) shows the histogram computed using the telephone data 30 90.4 87.4
and models adapted on utterances spoken through a close talking 31 90.4 925

microphone. If separate adaptation data is available, then such a

prior can be computed in a supervised environment as opposedtgple 2: Performance when MIC models and TEL data were used
the unsupervised environment described above. for compensation.

ML-II priors:  When the hyper-parameters are chosen such that
vglue of t.he mallrglnal (|..e.,.the likelihood of.the da.ta).ls MaXIrable 1 shows the results when the model built on male speak-
mized, this choice of prior is called the maximume-likelihood or_ . .

. - - . ers is tested on the telephone data. The mismatch between the
ML-II prior [1, 2]. A very similar approach is discussed in a much

. . . training and testing environments is due to differences in speaker,
different context using the same database in [4], and hence W[ﬁ g Hng . . P
annel and microphone, and is quite severe. The baseline word

not be discussed here ¢
’ accuracy is 36.7%. Using the simple bias transformation the pre-

dictive approach gives a 28% reduction in error rate whereas the

ML estimation only gives a 15% reduction in error rate. The S1
ofase gives similar results. These results show how predictive com-
g:ensation is robust even under severe conditions.

4. EXPERIMENTAL RESULTS

Sentences from the 991-word DARPA resource managem
(RM) task were recorded simultaneously through two channel

models were_z built, with a m_aX|m_um of 16 mlxt_ures per state. Th?eduction in error rate as compared to a 38% reduction in error
RM word pair grammar which gives a perplexity of about 60 WaSate for the ML estimation in the SO case. When the ML estima-
used for the experiments. Starting from a set of gender specifi g 5 1owed different estimates for speech and silence segments

HMMs built on male speakers\(s;s) and using the 300 sen- (S1), it does better than the predictive approach. This was ex-

tences recorded over a clqge-talking microphone by the nonfnati}ﬁ%cted from our analysis before - if the prior has a sharp peak and
speaker, a speaker-specific mod&h(rc) was generated USINg 5 clear mode, then the accuracy of the ML estimate is high and it

MAP adaptation [6]. The 300 sentences recorded over the telﬁ'capable of doing well. Also, in th&,7o-TEL case, the seg-
phone channel were used as adaptation data. 75 sentences Yi&ftation accuracy is already quite reliable thus giving better ML



estimates. The sharp peak in the prior distribution and the
ence of a clear mode for this case is apparent from Figure

and (d). The advantage of the predictive approach is clear f 6o ored
Table 1 where the ML estimates are not reliable. Further, pre //\/
tive compensation does not require iterative calculations that

common in ML approaches [5, 4] and hence is computation *°[ 1
less intensive and simpler to implement.

ML

As mentioned before, the predictive approach can be usecg
adaptation also. When transcriptions of the utterances are kn
a supervised computation of the prior is possible goedictive ¢, | |
adaptation In Tables 3 and 4, one sentence from the 300 <

tences of the adaptation data was used for prior computation.

rd acc

40t .

Asra-TEL Baseline: 36.7% Baseline
Supervised
Predictive ML B o
SO 58 1 431 No. of sentences
S1 66.7 65.2

Figure 2: Word accuracy (%) vs. number of sentences for SIM model

Table 3: Performance when SIM models and TEL data were use@{"d TEL data for S1 case

for adaptation
We estimate the prior and the hyper-parameters using empirical
Bayes approaches and approximate it using suitable distributions.

A 1o-TEL Baseline: 79.6% Predictive compensation is more robust, simpler and faster and

Supervised needs lesser amount of data than the corresponding maximum-

Predictive ML likelihood approach. We have demonstrated the effectiveness of

30 90.8 87.7 this approach for bg?h adaptation and compensation under differ-
S1 952 973 ent mismatch conditions.
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Tables 3 and 4 show the results for predictive adaptation. Since

the adaptation data in this case is a good representative of the test 7

data, the results are similar to those for compensation. The excep- )
tion is the performance for the S1-ML case in Table 3. The differ- 1
ence between this result (65.2%) and the corresponding result for
unsupervised learning in Table 1 (46.2%) shows how sensitive the

ML approach is to the accuracy in initial segmentation. The pre-2'
dictive approach does not exhibit this high degree of dependence,
once again demonstrating its robustness. 3.
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