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ABSTRACT

Earlier work in parametric modeling of distortions for robust
speech recognition has focussed on estimating the distortion pa-
rameter using maximum likelihood and other techniques as a
point in the parameter space, and treating this estimate as if it is
thetruevalue in a plug-in maximuma posteriori(MAP) decoder.
This approach is deficient in most real environments where, due to
many reasons, the value of the distortion parameter varies signif-
icantly. In this paper we introduce an approach which combines
the power of parametric transformation andBayesian prediction
to solve this problem. Instead of approximating the distortion pa-
rameter with a point estimate, we average over its variation, thus
taking into consideration the distribution of the parameter as well.
This approach provides more robust performance than the con-
ventional maximum-likelihood approach. It also provides the so-
lution that minimizes the overall error given the distribution of the
parameter. We present results to demonstrate the robustness and
effectiveness of the predictive approach.

1. INTRODUCTION

In many speech recognition applications, the distorting mecha-
nism that degrades performance varies significantly, even during
a single utterance (e.g. wireless channel). Also while model-
ing such distortions, the choice of model is often inaccurate (e.g.
modeling a varying channel distortion as a single bias in the cep-
stral domain). In these situations the traditional compensation
schemes, where the distortion is modeled as a nuisance param-
eter and then estimated as a single point in the parameter space,
do not adequately capture the characteristics of the distortion. The
usual maximum likelihood estimators (MLEs) used in such tech-
niques are only asymptotically consistent (i.e. the variance of the
estimates match the actual variance only as the amount of data
used for estimation is unlimited), hence with limited amount of
data, such estimates are not robust. These techniques treat the
estimatedparameter as it’sactual value and use it in a plug-in
maximuma posteriori (MAP) decoder without considering the
modeling errors or the uncertainty in the estimation.

2. BAYESIAN PREDICTION

In this paper, we solve this very important problem usingpre-
dictive compensation, which is a Bayesian solution to the point
estimation problem. It is a novel combination of two powerful
approaches in the area of robustness - (1) the parametric transfor-
mation approach [5, 4] and (2) Bayesian prediction [1, 2]. If�Y ,
the model of the test dataY is related to the trained model�X
through a functional distortion�Y = F�(�X), thenP (Yj�;�X)
is the conditional distribution of the data given the parameters of
the transformation�, where� 2 �, the parameter space. The

form of this conditional distribution depends upon the character-
istics of the the functional transformation. If� has a prior dis-
tribution P (�), then instead of estimating�, we smooth out the
conditional distribution averaging over the uncertainty of the pa-
rameter to obtain the predictive distribution:

P (Yj�X) =

Z
�2�

P (Yj�;�X)P (�)d�: (1)

SinceP (Yj�X) is theactualdistribution of the observed values
ofY, it can “predict” what valuesY can take and hence is called
the predictive distribution [1]. It can be shown that this approach
is more robust, and it minimizes the overall error given the prior
distribution [2]. A predictive approach was recently proposed for
robust classification in [3].

Usually, if the prior has a sharp peak, i.e., if the testing environ-
ment is not widely varying, and when reasonable amount of data is
available to obtain the ML estimate accurately, there is not much
difference in the performance between the predictive and ML ap-
proaches since the final predictive distribution can be approxi-
mated in terms of the conditional distribution calculated at the
ML estimate:

R
�2�

P (Yj�;�X)P (�)d� � �P (Yj�ML;�X).
We shall see from our experiments that the advantage of the pre-
dictive distribution is apparent when there is usually a wide dif-
ference between the training and testing conditions, and that the
performance of the predictive approach is good even in the pres-
ence of small amounts of data. This technique can be used for
both adaptation (i.e., when limited amount of data from the test-
ing environment is available in advance) or compensation (i.e.,
when the process is performed using the testing data only).

The steps in our predictive approach are (1) determine the func-
tional form of the prior, (2) estimate the hyper-parameters, (3)
compute the predictive density, and (4) use it in a plug-in MAP
decoder to compute the word sequence.

3. DETERMINATION OF PRIOR
DENSITY

An important element of the predictive approach is the prior prob-
ability distribution over�, the parameter space. Such a prior
should (1) have a functional form such that the integral in Equa-
tion 1 can either have a closed form solution or have a reasonably
good approximation, and (2) be consistent with the data and the
models and adequately quantify the prior information concerning
the distortion mechanism.

The shape of the prior (and the subsequent calculation of the pre-
dictive distribution) is determined by the choice of the functional
transformationF�(�). The form ofF�(�) is chosen by examin-
ing the data. In our paper we start with a very simple functional



model of the distortion which transforms the means of the model
using an additive bias:�Y = �X + �, whereX is the undis-
torted data and� represents the mean. IfX and� are independent
processes andX is modeled by a hidden Markov Model (HMM)
with Gaussian mixture states such that the distribution of the data
given the statest and the mixturect is P (xtjst = s; ct = c) =

N (�sc; �
2
sc), then the conditional distribution of the test data is

P (ytjst = s; ct = c; �) = N (�sc + �; �2sc). The parameters of
the distribution of� are called thehyper-parametersof the pre-
diction.

One way to tackle the problem of prior selection is to use an em-
pirical Bayes approach, where the priors are computed from the
available adaptation data. First we assume that each component
of � is independent of each other, i.e. the distortion affects each
cepstral coefficient of the data independently. Then the prior for
each component of theD dimensional vector is computed sepa-
rately, and then the final prior is calculated as the product of the
marginal priors:P (�) = �D

i=1P (�i). Here, the parameter space
is � � R

D. Through the rest of the paper, we will talk of� as
though it is a single parameter without the loss of generality.

Prior Computed Directly from Stereo Data: To study the na-
ture of the distortion and to obtain preliminary information about
the shape of the prior, we used a database where utterances were
recorded simultaneously over a close talking microphone (“clean”
data) and over a dial-up telephone line (“noisy” data). Such a
database is called a “stereo” database. Since such databases are
impractical in real applications, this procedure was intended as a
tool for understanding the nature of the prior.
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Figure 1: Histograms of bias computed from 20 sentences using (a)
stereo data (b) without stereo data (c) for silence segments only (d) for
speech segments only.

Consider the functional transformationY = X + Z. Given a
stereo database with data((x1; y1); :::; (xT ; yT )), we can see that
the limit of the estimated mean ofZ is

lim
T!1

~z = lim
T!1

1

T

TX
t=1

(yt � xt) = ��Y � ��X = ��: (2)

Similarly

lim
T!1

~�2Z = �
2

� : (3)

HenceZ can be a reasonably good estimator of� and given suf-
ficient data, the histogram ofzt = (yt � xt); t = 1; :::; T

should closely approximate its prior. From the histogram we
can hypothesize a parametric functional form of the prior and es-
timate the hyper-parameters. Figure 1(a) shows this histogram
for the first coefficient estimated using 20 sentences spoken over
a telephone line. We can determine that the histogram is bi-
modal, and this bimodal nature can be captured by constructing
priors for speech and silence segments separately (Figures 1(c)
and (d)). The two priors are asymmetric Laplacians (L�1�2(�) =
�1�2
�1+�2

fexp(��1j��mj)u(�(��m))+exp(��2j��mj)u(��

m)g; �1; �2 > 0, wherem is the mode of the distribution and
�� = m+ 1

�2
�

1

�1
is the mean.

If the conditional distribution is a GaussianN (�X + �; �2X) (or
a mixture of Gaussians) and the prior is an asymmetric Lapla-
cian given before, then we can show that the predictive distribu-
tion is also an asymmetric Laplacian (or a mixture of asymmetric
Laplacians) with each component having a mode at�X , and the
mean at�X + �� . Even though such flat-tailed priors are con-
sidered robust [1], there are many problems with this approach -
(1) when the mode of the predictive distribution is not equal to its
mean, the MAP decoder runs into problems, and (2) we know that
this marginal does not match the distribution of our speech data.
To step around these problems, we can choose the shape of the
prior such that the generated marginal is consistent with our prior
knowledge of the data. We discuss this issue next.

3.1. Using Marginal Distribution to Deter-
mine Priors: Minimum Divergence Ap-
proximation

One common way to determine the functional form of the prior is
from our knowledge of the marginal distribution. Since we know
that a hidden Markov model with Gaussian mixture distribution
is a good model of speech for both the marginaland the condi-
tional distributions, we can chose the conjugate prior of the con-
ditional distribution to model our prior. In our case, that would
be a normal distribution. We can determine the hyper-parameters
of the normal distribution such that theKullback-Leibler informa-
tion divergence[2], a standard measure of dissimilarity between
distributions, is minimized between the Gaussian and the asym-
metric Laplacian. This is also called the maximum-entropy so-
lution [1]. The divergence between two distributionsL�1;�2(�)
andN (�; �2) is defined asEflog(L=Ng) whereEfg is the ex-
pectation taken over the distributionL. After eliminating terms
not containing� and�, the divergence is equal to:

D(LjjN ) = �Eflog �g �Ef
(� � �)2

2�2
g: (4)

Setting the derivatives to zero provides

@D

@�
= 0 ) � = Ef�g = �� and; (5)

@D

@�
= 0 ) �

2 = Ef(� � �)2g = �
2

� : (6)



Thus the normal distribution is chosen such that its mean and vari-
ance are equal to the mean and variance computed from the asym-
metric Laplacian mentioned before.

The choice of the conjugate prior makes the computation in Equa-
tion 1 quite simple. (It is considered that the choice of conjugate
prior is not necessarily robust. But if the likelihood is concen-
trated in the center portion of the prior, then the use of the natural
conjugate will be reasonably robust [1].) If the conditional dis-
tribution is given asN (�X + �; �2X) and the prior isN (��; �

2
�),

then the marginals are computed to beN (�X + �� ; �
2
X + �2�).

The hyper-parameters�� and�2� can be determined from the data
as�� = 1

T

PT

t=1
zt and�2� =

1

T�1

PT

t=1
(zt � ��)

2.

3.2. Unsupervised Approach to Hyper-
parameter Computation

Computing the prior from the stereo data is not robust and highly
impractical. IfX = (x1; ::; xT ) andY = (y1; :::; yT ) are mod-
eled by HMMs, the ideal alternative would be to use the sequence
of means corresponding to each mixture component that gener-
ated the data i.e.(�X1

; :::; �XT
) and(�Y1 ; :::; �YT ). Unfortu-

nately such a sequence is not available to us because we neither
know the distribution ofY nor have access to the training dataX.
But if we are given�X then we can estimate themost likely gener-
ator sequencef ~�Xt

g t = 1; :::; T by performing a forced align-
ment using the MAP decoder and the transcriptions estimated
from the recognition output. We can now defineZ = Y � ~�X and
we can use the earlier method to plot the histogram. This method
should give a more robust estimate of the prior provided that the
mismatch between the models and the data is not too severe. Fig-
ure 1(b) shows the histogram computed using the telephone data
and models adapted on utterances spoken through a close talking
microphone. If separate adaptation data is available, then such a
prior can be computed in a supervised environment as opposed to
the unsupervised environment described above.

ML-II priors: When the hyper-parameters are chosen such that
value of the marginal (i.e., the likelihood of the data) is maxi-
mized, this choice of prior is called the maximum-likelihood or
ML-II prior [1, 2]. A very similar approach is discussed in a much
different context using the same database in [4], and hence will
not be discussed here.

4. EXPERIMENTAL RESULTS

Sentences from the 991-word DARPA resource management
(RM) task were recorded simultaneously through two channels:
(1) A close talking microphone, and (2) a telephone handset over a
dial-up line. The sentences were spoken by a non-native speaker.
The data consisted of 300 sentences for adaptation and 75 sen-
tences for testing. 1769 context dependent (CD) subword unit
models were built, with a maximum of 16 mixtures per state. The
RM word pair grammar which gives a perplexity of about 60 was
used for the experiments. Starting from a set of gender specific
HMMs built on male speakers (�SIM ) and using the 300 sen-
tences recorded over a close-talking microphone by the non-native
speaker, a speaker-specific model (�MIC ) was generated using
MAP adaptation [6]. The 300 sentences recorded over the tele-
phone channel were used as adaptation data. 75 sentences were

recorded separately over the telephone line (TEL) for testing. A
38-dimensional feature vector (with 12 LPC-derived cepstral vec-
tors, 12� and 12�� coefficients,� and�� energy) was used
for recognition. Only the 12 cepstral coefficients were used for
prior determination in this paper.

Recognition results are provided for two mismatch cases: (1)
�SIM models used with TEL data.(2)�MIC tested on TEL data.
In each of these cases, either a single prior (or a single ML bias
value) is computed for the entire data (this case is referred to as
S0) or separate calculations are done for speech and silence seg-
ments (this case is indicated as S1).

Tables 1 and 2 show results for predictive compensation i.e., when
only the test data and the trained models are available and the tran-
scriptions are unknown. One sentence is used for compensation
in all the following tables.

�SIM -TEL Baseline: 36.7%
Unsupervised

Predictive ML
S0 54.4 45.9
S1 54.4 46.2

Table 1: Performance when SIM models and TEL data were used
for compensation

�MIC -TEL Baseline: 79.6%
Unsupervised

Predictive ML
S0 90.4 87.4
S1 90.4 92.5

Table 2: Performance when MIC models and TEL data were used
for compensation.

Table 1 shows the results when the model built on male speak-
ers is tested on the telephone data. The mismatch between the
training and testing environments is due to differences in speaker,
channel and microphone, and is quite severe. The baseline word
accuracy is 36.7%. Using the simple bias transformation the pre-
dictive approach gives a 28% reduction in error rate whereas the
ML estimation only gives a 15% reduction in error rate. The S1
case gives similar results. These results show how predictive com-
pensation is robust even under severe conditions.

The�MIC model gives a baseline word accuracy of 79.6% on
the TEL data (Table 2). Since the speaker mismatch has been
removed using MAP adaptation, only microphone and channel
mismatches remain. The predictive compensation gives a 53%
reduction in error rate as compared to a 38% reduction in error
rate for the ML estimation in the S0 case. When the ML estima-
tor is allowed different estimates for speech and silence segments
(S1), it does better than the predictive approach. This was ex-
pected from our analysis before - if the prior has a sharp peak and
a clear mode, then the accuracy of the ML estimate is high and it
is capable of doing well. Also, in the�MIC -TEL case, the seg-
mentation accuracy is already quite reliable thus giving better ML



estimates. The sharp peak in the prior distribution and the pres-
ence of a clear mode for this case is apparent from Figure 1(c)
and (d). The advantage of the predictive approach is clear from
Table 1 where the ML estimates are not reliable. Further, predic-
tive compensation does not require iterative calculations that are
common in ML approaches [5, 4] and hence is computationally
less intensive and simpler to implement.

As mentioned before, the predictive approach can be used for
adaptation also. When transcriptions of the utterances are known,
a supervised computation of the prior is possible forpredictive
adaptation. In Tables 3 and 4, one sentence from the 300 sen-
tences of the adaptation data was used for prior computation.

�SIM -TEL Baseline: 36.7%
Supervised

Predictive ML
S0 58.1 43.1
S1 66.7 65.2

Table 3: Performance when SIM models and TEL data were used
for adaptation

�MIC -TEL Baseline: 79.6%
Supervised

Predictive ML
S0 90.8 87.7
S1 92.2 92.3

Table 4: Performance when MIC models and TEL data were used
for adaptation.

Tables 3 and 4 show the results for predictive adaptation. Since
the adaptation data in this case is a good representative of the test
data, the results are similar to those for compensation. The excep-
tion is the performance for the S1-ML case in Table 3. The differ-
ence between this result (65.2%) and the corresponding result for
unsupervised learning in Table 1 (46.2%) shows how sensitive the
ML approach is to the accuracy in initial segmentation. The pre-
dictive approach does not exhibit this high degree of dependence,
once again demonstrating its robustness.

Figure 2 shows further proof of the dependence of the ML ap-
proach on the availability of data and the relative insensitivity of
the predictive approach. The improvement in word accuracy with
increase in adaptation data (from 1 to 50 sentences taken from
the 300 adaptation sentences) for unsupervised prior computation
using�SIM models and TEL data is plotted in Figure 2. The per-
formance curve of the predictive approach is flatter than the ML
technique showing that even when using small amounts of data,
the predictive approach performs better and is more consistent.

5. SUMMARY

In this paper we have introduced a new Bayesian robustness
paradigm that combines the power of functional transformation
with predictive techniques. In this technique, instead of estimat-
ing the parameter of the distortion, we integrate over the prior dis-
tribution of the parameter, thus compensating for its uncertainty.
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Figure 2: Word accuracy (%) vs. number of sentences for SIM model
and TEL data for S1 case

We estimate the prior and the hyper-parameters using empirical
Bayes approaches and approximate it using suitable distributions.
Predictive compensation is more robust, simpler and faster and
needs lesser amount of data than the corresponding maximum-
likelihood approach. We have demonstrated the effectiveness of
this approach for both adaptation and compensation under differ-
ent mismatch conditions.
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