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ABSTRACT

This paper describes the application of Bayesian networksto au-
tomatic speech recognition (ASR). Bayesian networks enablethe
construction of probabilistic models in which an arbitrary set of
variables can be associated with each speech frame in order to
explicitly model factors such as acoustic context, speaking rate,
or articulator positions. Once the basic inference machinery isin
place, awide variety of models can be expressed and tested. We
have implemented a Bayesian network system for isolated word
recognition, and present experimental results on the PhoneBook
database. Theseresultsindicate that performanceimproves when
the observations are conditioned on an auxiliary variable model-
ing acoustic/articulatory context. Theuseof multivalued and mul-
tiple context variables further improves recognition accuracy.

1. INTRODUCTION

Hidden Markov models are the most widely used method
for doing automatic speech recognition, and are based on
a very simple set of concepts and assumptions. the mod-
els are expressed in terms of phonetic states and acoustic
emissions, and are parameterized by transition and emis-
sion probabilities. Specifically, an HMM expresses the
probability of a segmentation of an acoustic observation
stream 01,02, ...,0, into phonetic states qi,42,...,q, as.
Plo,q) = Pla)P(oilan) [Tr, Plalai-1)P(odar). Al-
though there is a great deal of variation in the meaning assigned
to the states, and in the acoustic features, there is little variation
in the basic factorization of the joint probability distribution.

A Bayesiannetwork isamore general way of expressing and com-
puting with probability distributions [6]. With a Bayesian net-
work, it is possible to associate an arbitrary set of variables with
each speech frame, and model their joint probability distribution.
Hence, it isstraightforward to construct modelsin which phonetic
state information (represented by a phone variable @) is aug-
mented with variables representing, for example, articulator po-
sitions or speech rate. Moreover, an arbitrary set of conditional
independence assumptions can be used to factor the joint proba-
bility distribution. There are standard algorithms for computing
with Bayesian networks, which can perform the same functions
asan HMM.

It is often possibleto construct an HMM that representsthe same
probability distribution as a Bayesian network by using states that

represent the Cartesian-product of the variables in each frame
(a “cross-product HMM”). However, inference with the HMM
can be significantly slower [9, 3, 10]. The relationship between
Bayesian networks and HMMsiis discussed further in [5, 9, 3].

We haveimplemented a systemfor isolated word recognition with
Bayesian networks. In previous work [11], we reported results
for the PhoneBook database [8] showing relative improvements
in the word error rate of between 12 and 29% (depending on net-
work topology and initialization) with abinary auxiliary variable
representing acoustic/articulatory context. This paper reviewsthe
Bayesiannetwork structuresthat are necessary for speechrecogni-
tion, and presents new results showing that the use of multivalued
and multiple context variables results in a further improvement.
Additionally, we present resultsin which the network is structured
for unsupervised utterance clustering.

2. BAYESIAN NETWORKS
2.1. Definition

A Bayesian network expressesajoint probability distribution over
a set of random variables, and consists of:

1. A setof randomvariables X1, ... X,.

2. A directed acyclic graph in which each variable appears
once. The immediate predecessorsof a variable X; are re-
ferred to asits parents, with values Parents(X;). Thejoint
probability distribution is factored as:

P(X1 ::L‘l,...,Xn::L‘n):

H P(X; = zi|Parents(X;)).
=1

3. A representation of the required conditional probabilities.
When the variables are discrete, a tabular representation is
convenient. For real-valued acoustic observations, Gaussian
mixtures can be used.

Temporal processes are modeled with a variant referred to as dy-
namic Bayesian networks (DBNs) [1] . In a DBN, a set of vari-
ablesis associated with each frame, and the complete set of vari-
ables consists of the union of al these subsets. The graph struc-
tureis repeating, and the conditional probabilities associated with
analogousvariablesin different frames are tied.



Figure 1: An HMM model of the word “hi” (top), and a con-
ceptual DBN representation (bottom) for a four-frame utterance.
Nodes represent states in the HMM, and variables in the DBN.
Shaded nodes represent initial and final states in the HMM, and
observed (acoustic) variables in the DBN. Arcs represent transi-
tionsinthe HMM, and conditioning relationshipsinthe DBN. The
valuesassignedto the DBN state variables correspond to one par-
ticular path through the HMM: two time stepsin /HH/, and two
in /AY/. This DBN model is inadequate because it will assign
nonzero probability to assignmentsthat do not correspondto paths
inthe HMM, and cannot represent parameter tying (see text).

Thereisadistinction between variableswith known values (obser-
vation variables) and variableswhosevaluesare unknown (hidden
variables). We will refer to a set of assignments to the observa-
tion variables by o, and to a set of assignmentsto the hidden vari-
ablesby q. Asdiscussedin Section 2.3, there are procedures for
computing P(o) = Zq P(o,q) (analogousto summing over all
paths through an HMM), and q* = arg maxq P(0,q) (anao-
gousto Viterbi decoding). There are also EM algorithms.

2.2. lsolated Word ASR Networks

We begin the discussion of DBN word models by relating DBNs
to HMMs. Figure 1 showsan HMM word model, and a schematic
DBN representation. There are several thingsto note. First, the
DBN isexplicit about time: thereis aseparate set of variablesfor
each frame. Secondly, the two diagrams must beread in very dif-
ferent ways: the HMM diagram represents astochastic finite state
automaton, whereas the DBN diagram represents conditional in-
dependencerelations between variables. In the HMM, the nodes
represent statesandthe arcstransitions; inthe DBN, the nodesrep-
resent variables, and the arcs represent conditioning.

Thebasicideabehindthe DBN representationisto createaone-to-
one correspondence between assignments of valuesto the hidden
variables, and paths through the HMM. The two representations
should assign equal probabilities to analogous paths/assignments.
Unfortunately, the schematic DBN of Figure 1 and will associate
nonzero probability with variable assignments that do not corre-
spondto valid paths through the HMM (for example, when al the
state variables are simply assigned the value /HH/).

The DBN of Figure 1 also does not accurately represent parame-
ter tying. To see this, consider aleft-to-right word model of the
word “digit”: /D IH JH IH T/. The occurrence of the /IH/-/JH/
transition requiresthat P(Q: = /JH/ | Q-1 = [IH]) # 0,
whereasthe occurrenceof the/IH/-/T/ transition requires P(Q: =
JJH/ | Qi—1 = /IH/) = 0. (Otherwise, the second /IH/ could

be followed by another /JH/ rather than /T/. Therefore, the two
occurrencesof /IH/ must betreated as different states, precluding
parameter tying.

Figure 2 showsaDBN that solvesthe various problems associated
with the simpler representation. The position variables represent
the state in an HMM word model at each time frame. The word
model is assumed to be a simple left-to-right model so position
1 is always followed by ¢ + 1. (In genera, arbitrary finite-state
word models can be represented [10].) The phone variables rep-
resent the corresponding phonelabels, and the transition variables
explicitly represent when there are transitions between phones.

Figure 2 showsarepresentative assignment of valuesfor theword
“digit.” Thusposition 1 mapsinto /D/, position 2 into/IH/, and so
forth. The probability of atransition is conditioned on the phone,
thus encoding a distribution over phone durations. Depending on
the value of the preceding transition variable, the position vari-
able in a frame either retains its previous value or increases by
1. The“end-of-word” variable is assigned the arbitrary value of
1, and the conditional probabilities are defined as P(EOW =
1|Position # 5 or Transition # 1) = 0. This ensures that
all assignmentsend with atransition out of the last emitting state
inthe word. The explicit representation of phone labels and tran-
sitions allows for parameter tying. The context variables are not
required to emulate an HMM, but improve performance. With
the context variable as shown, the network is similar to factorial
HMMs[3].

With this representation, it is possible to assign the conditional
probabilities so that thereis aone-to-one correspondencebetween
assignmentsof valuesto the DBN variables, and pathsthrough an
HMM [10]. Thetransition and emission probabilities are encoded
in the conditional probabilities associated with the transition and
observation variables. All the other conditional probabilities are
either 0 or 1, and reflect deterministic relationships between the
variables.

With the basic machinery required to emulate an HMM estab-
lished, a variety of more interesting network structures can be
tested. In particular, variables can be introduced to represent
acoustic context, articulator positions, noise sources, speech rate,
and other factors[10]. With aDBN, the correspondingjoint prob-
ability distribution can be factored in very general ways, and the
models can be tested without writing new code.

2.3. Algorithms

Bayesian networksare useful in ASR becausethere arealgorithms
for performing the sametasksthat can be solved for HMMs, while
at the same time working with more general models of proba-
bility distributions. The algorithms are based on dynamic pro-
gramming, and involve computations similar to the forward and
backward recursionsof HMM inference. However, thealgorithms
are somewhat more involved because they work with arbitrary
network structures. In the worst case, the inference algorithms
have the same time-complexity asinference with a cross-product
HMM, but usually the conditional independence relations inher-
ent in anetwork render them more efficient. For example, in[3] a
class of networks is discussed where the observations are condi-
tioned on M independent state chains (as opposedto 1 in Figure
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Figure2: Animproved DBN representation of an HMM. ThisDBN will associatea probability of 0 with hidden variable assignments
that do not correspondto pathsthrough the HMM. It also directly represents parameter tying, so for example, positions2 and 4 will have
identical behavior with respect to transition and emission probabilities becausethey both correspondto /IH/. The context variables are
not needed to emulate an HMM, but improve performance. In this picture, they are are assigned values representative of voicing. The

last /IH/ is unvoiced due to feature spreading.

1). Assuming each state variable has K~ values, inference with a
DBNisO(M K™*1) asopposedto O( K *) for across-product
HMM representation.

The implementation used in this work is based on the algorithm
of [7], with efficiency improvementsdescribed in [10]. The suffi-
cient statistics required for EM can be gathered directly from the
results of the inference procedure [4].

3. EXPERIMENTAL RESULTS

This section presents results for the PhoneBook database, which
isalarge collection of telephone-quality isolated-word utterances
chosen to exhibit coarticulatory effects [8]. The data was pro-
cessed in 25ms frames overlapped by 2/3, to generate MFCCs
andtheir deltas. Following cepstral mean subtraction, the MFCCs
and deltas were vector quantized separately into two eight-bit data
streams. Cyp and delta-C, were each quantized to four bits and
concatenated to form athird eight-bit data stream.

Training, tuning and test sets are asin [2]. There were 19, 421
training utterances, 7, 291 tuning utterances, and 6, 598 test utter-
ances. There was no overlap between the training and testing vo-
cabularies or speakers. The database has a vocabulary of about
8,000 words, divided into subsets of about 75 words each; the
test task consisted of selecting among the word modelsin asingle
subset. Our word models were based on the context-independent
phone transcriptions provided with the database.

Previouswork [11] established that the use of asingle binary con-
text variable (as in Figure 2) can significantly improve perfor-
mance, and Table 1 indicates that the use of multivalued context
variables and multiple context chains (two per frame) further im-
provesperformance. Using two binary context chainswasasgood
or better than using a single 4-valued context chain. The fac-
tored representation is preferable because it has only 2 indepen-
dent context-transition parameters as opposed to 15.

It is not surprising that the ability to model context improved
recognition performance. However, the use of a context variable
differs significantly from the use of context-dependent phones:
context-dependent phones encode a-priori knowledge about ex-
pected acoustics, based on the surrounding phone labels, and are

insensitive to the acoustics of individual utterances. A context
variable as in Figure 2 captures information about the surround-
ing acoustics as observed on an utterance-by-utterance basis. For
example, consider simple left-to-right word modelswith context-
dependent phones. The sequence of phoneswill be the same for
all utterances of a particular word. In contrast, a context variable
can switch unpredictably between values.

Table 2 shows results using a context-dependent phonetic alpha-
bet based on diphones(see[11]). Doubling the number of parame-
ters by using a context-dependent al phabet produced a greater im-
provement than using acontext variable with context-independent
phones. However, the use of both kinds of context did the best
(2.6% word error rate). The combination was better than a sys-
tem with about the same number of parameters that simply used
twice as many context-dependent phones.

Our results improve on the 4.1% result reported in [2] for a hy-
brid ANN-HMM system with continuous-valued feature vectors
(rather than V Q) and using the same word transcriptions asin our
work. However, with word transcriptions based on the CMU 0.4
dictionary and minimum duration modeling, [2] reports abest re-
sult of 1.5%. We report the word error rate (WER) computed by
dividing thetotal number of incorrectly identified words by theto-
tal number of test words; [2] averagesthe WER of different parti-
tions of the test set. We checked and found that the two methods
give essentially identical results.

To interpret our results, we examined the correlations between the
context variable and various acoustic features. The value of the
context variable wasmost strongly related to Cy and delta-Cy ; the
relationship is illustrated in Figure 3 for a single binary context
variable and 4-state phone models. The context variable tends to
haveavalueof 0 whendelta-Cy isnear 0, or slightly negative. The
pattern isthe sasmefor 3-state phone models, and with the context-
dependent alphabet, but different for other network topologies.

Toillustrate the easewith which Bayesian networks canbe usedto
perform different tasks, we configured the network of Figure 2 to
do unsupervised utterance clustering. Thisis done by constrain-
ing the auxiliary variables to “copy” the previous value, which
can be donewith appropriate conditional probabilities. A cluster-
ing network produced aword-error-rate of 4.6%, and the resulting



States | Number of | Context | Total Word
per Context Variable | System | Error
Phone | Variables Arity Params | Rate

3 0 (HMM) - 96k 5.4%
3 1 2 191k 4.1%
3 1 3 287k 4.0%
3 1 4 383k 3.8%
3 2 2 383k 3.6%
4 0(HMM) | - 127k | 48%
4 1 2 254k 3.6%
4 1 3 381k 3.5%
4 1 4 508k 3.2%
4 2 2 508k 3.2%

Table 1: Resultsfor networkswith one and two context variables
per frame; o = 0.25%.

| Network | Parameters | Error Rate |
CDA-HMM 257k 3.2%
CDA-Chain-BN | 515k 2.6%
CDA-HMM 510k 3.1%

Table 2: Test results with a context-dependent alphabet (CDA).
Thefirst two CDA results used 336 phones; the last CDA result
used less frequently occurring phones and had a size of 666. The
CDA-Chain-BN hasthe topology of Figure 2. o ~ 0.20%.

clusters show interesting patterns with respect to both speaker and
word characteristics. In aViterbi decoding, 75% of the female ut-
teranceswere placed in cluster 0, and 82% of the male utterances
were placed in cluster 1. Moreover, words beginning with alig-
uid consonant (e.g. laundromat and livelihood) tended to be as-
signed to cluster O, while wordsendingin aliquid consonant (e.g.
pathological and unethical) were associated with cluster 1. For
both these word characteristics, about 69% of the utteranceswere
placed in the predominant cluster.

4. CONCLUSION

Bayesian networks are a well-principled and flexible way of rep-
resenting and reasoning with probability distributions. This paper
appliesBayesian networksto isolated word ASR, and presentsex-
perimental results that show that the use of an auxiliary context
variable can improve recognition performance. We are currently
extending the methodology to continuous speech recognition and
more complicated network structures.
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