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ABSTRACT

In this study, a duration{based measure is formulated for

assigning con�dence scores to phonetic time{alignments

produced by an automatic speech segmentation system.

For speech corrupted by additive noise or telephone chan-

nel environments, the proposed con�dence measure is

shown to provide a reliable means by which gross segmen-

tation errors can be automatically detected and marked for

human hand correction. The measure is evaluated by com-

puting Receiver Operating Characteristic (ROC) curves to

illustrate the expected trade{o� in probability of detecting

gross segmentation errors versus false alarm rates.

1. INTRODUCTION

In recent years there has been increased interest in transi-

tioning speech technologies from laboratory settings into

real{world environments. Consequently, the demand is

high for (1) new algorithms which mitigate the e�ects of

environmental noise, and (2) carefully collected develop-

ment and evaluation speech corpora recorded in realistic

environments. In order to provide phonetically labeled

databases, numerous methods for automatic segmentation

have been proposed for noise{free environments [1, 2, 3, 4].

In noisy environments, segmentation accuracy drops con-

siderably and the degree to which human experts must

hand{correct misplaced phonetic boundaries is dramati-

cally increased [5, 6, 7]. For example, in [7], it was shown

that for a Hidden Markov Model (HMM) based segmenta-

tion system, 86% of phoneme boundaries are placed within

20 msec of hand{labeled locations when time{aligning

noise{free speech. When computer fan noise is added at an

SNR of 10 dB, the performance is reduced to 63% within

20 msec if noise compensation is not performed. In the

same study, compensation methods including speech en-

hancement and model adaptation were considered improve

noise robustness. Although compensation methods were

shown to improve time{alignment accuracy, there remains

a sizable performance gap between a compensated system

and the same system retrained from hand{labeled speech

recorded in the matched noisy environment. Consequently,

this paper considers methods of assigning levels of con�-

dence to automatically derived phonetic time{alignments

so that the e�orts of manual corrections can be better fo-

cused.

�This work was supported in part by a National Science

Foundation Graduate Research Fellowship and by the U.S. Gov-
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2. ALGORITHM FORMULATION

2.1. Impact of Noise on Segmentation

Automatic segmentation of speech is a di�cult task even

in noise{free environments. Often, the \correct" placement

of phonetic boundaries is highly subjective, especially dur-

ing continuous events such as vowel{to{vowel or vowel{to{

semivowel transitions. In noise, the boundaries between

phones become less sharp and some events are lost en-

tirely (e.g., fricatives spoken in the presence of wideband

noise distortion). Fig. 1 illustrates these common prob-

lems. For example, in Fig. 1A, the spectrogram for a (8

kHz sampled) phrase from the TIMIT database, \with

mock distaste" is shown with the corresponding hand{

labeled phonetic transcription. In Fig. 1B, the speech is

corrupted by additive computer cooling fan noise (5 dB

SNR). Time{alignments were generated by �rst compen-

sating the HMM{based system with the Parallel Model

Combination (PMC) technique [13]. By comparing the

two phonetic time{alignments it is clear that there are lo-

cations in which the accuracy of the boundary placement

can be very poor. Moreover, the resulting durations of

some phonetic segments are increased beyond what would

normally be expected in natural speech, while others are

severely compressed.

2.2. Con�dence Measure Formulation

There has been considerable interest in recent years to-

wards improving speech recognition by associating levels

of con�dence to automatically recognized words [11, 12].

In general, these methods assign a score, C(wi), for the ith

recognized word wi such that C(wi) = 1 if the word has

been correctly recognized and C(wi) = 0 otherwise. Suc-

cessful measures for speech recognition should adequately

predict when recognition fails (i.e., the measure should cor-

relate highly with the actual system performance). As-

signing similar con�dence scores to time{aligned speech

poses several new challenges. First, there exists a con-

tinuum of possible boundary misalignments rather than

a binary \correct/incorrect" recognition decision. Sec-

ond, some errors are more signi�cant than others (e.g.,

consider misalignments involving stop{to{vowel compared

with vowel{to{vowel transitions). Ideally the con�dence

measure should provide user feedback on the quality of

the boundary assigned to each phonetic transition. How-

ever, signi�cant misalignment of one phoneme will result

in misalignments for neighboring phonemes. Therefore, de-

termining the exact location of the initial error is di�cult.



Figure 1: Illustration of common problems encountered by an automatic segmentation system when time{aligning noise

corrupted speech. In (A) a spectrogram of the phrase \with mock distaste" is shown with hand{labeled phonetic bound-

aries. In (B), the speech was degraded by additive computer fan noise (5 dB SNR) and automatically time{aligned by an

HMM{segmentation system which was compensated using Parallel Model Combination (PMC).

In addition, the measure should be relatively insensitive

to noise or recording conditions. Acoustic features such as

log{likelihood scores from HMMs are sensitive to mismatch

between training and testing environments. Furthermore,

measures of spectral variation have been shown to be sen-

sitive to noise [5]. Consequently, this paper introduces a

duration{based con�dence measure which is assigned to

each sentence rather than on a per{phone basis.

Severe segmentation errors produce phonemes whose du-

rations deviate signi�cantly from that of natural speech.

Therefore, to characterize this situation, we �rst assume

that natural phone durations are modeled using a 2{

parameter Gamma pdf [10],

P(dn j `n; �; �) = �
��

d
��1
n

�(�)
exp

�
�dn
�

�
(1)

where dn is the duration variable (in msec), � and � rep-

resent parameters of the Gamma pdf for the nth phoneme

`n. Certainly, the duration densities will be dependent on

their surrounding phonetic context. In this paper, a set

of 18 left{context classes and 19 right{context classes de-

scribed in [2] are used in estimating the Gamma pdfs.

The observed phoneme duration, dobs, as automatically

segmented by a computer algorithm can be modeled as,

dobs = dact + el + er; (2)

where dact represents the actual underlying phoneme du-

ration and el and er represent error made by the system

in placing the left and right phonetic boundaries. Here,

dact is modeled by a Gamma distribution while each of

the error terms are assumed to be statistically indepen-

dent and modeled by a zero{mean Gaussian distribution,

N (0; �2e). The total duration error is therefore given by,

fE = el + erg, which also has zero{mean and variance

given by, f�2E = �
2

e + �
2

e = 2�2eg. Therefore,
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exp

�
�E2
4�2e

�
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The con�dence measure is formulated by posing a two{

hypothesis problem. First, a duration error threshold, � , is

selected such that errors greater than � msec are considered

unacceptable while errors in duration of less than � msec

are considered acceptable. Since it is generally accepted

that phoneme boundary misalignments of more than 20

msec are considered gross errors, in this paper � = 20

msec. Hypothesis H1 models the case that dobs resulted

due to a duration error of (jEj > �) msec. Under H0, we
hypothesize that dobs resulted due to a duration error of

(jEj � �) msec. In other words, hypothesis H1 models the

condition that a signi�cant alignment error has occurred

while H0 models less severe misalignments. Formally, the

detector is given by the likelihood ratio,

�(dobs) =
P(dobs j H1 : `; �; �; jEj > � )

P(dobs j H0 : `; �; �; jEj � �)
: (4)

where,

P(dobs j H1 : `; �; �; jEj > � ) =Z
jEj>�

P(dact = dobs � E j `; �; �)P(E)dE (5)

P(dobs j H0 : `; �; �; jEj � � ) =Z
jEj��

P(dact = dobs � E j `; �; �)P(E)dE : (6)

Substituting (5) and (6) into (4) yields,

�(dobs) =

R
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P(dact = dobs � E j `; �; �)P(E)dE : (7)

Finally, substituting (1) and (3) into (7) and simplifying

gives,
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where the numerator and denominator terms are evaluated

with the additional constraint that : (dobs � E) > 0.

Assuming each of the observed durations are statistically

independent, an overall log{likelihood score can be com-

puted for a sequence of N phonemes L = f`1; `2; : : : ; `Ng



with observed durations D = fd1; d2; : : : ; dNg. The pro-

posed con�dence measure is computed for each parsed sen-

tence by averaging the log{likelihoods over the entire phone

sequence. Speci�cally,

C(D;L) =
1

N

NX
n=1

log �(dn): (9)

Intuitively, C(D;L) will be small in value when the ob-

served phone durations deviate little from that expected

from hand{labeled speech. Thus, the proposed con�dence

measure is compared with a threshold, �, in order to de-

cide if the segmented sentence requires hand{correction,

fC(D;L) � �g, or is acceptable, fC(D;L) < �g.

3. ALGORITHM EVALUATION

3.1. Baseline Segmentation Algorithm

The segmentation algorithm used in this study was pre-

viously formulated in [7]. Each of 46 phoneme units are

modeled using a 5{state left{to{right continuous density

HMM. For each state, 16 mixture densities are used to

characterize the observation pdf. Here, observation vectors

consisting of 12 MFCC, 12 delta MFCC, and normalized

log{frame energy are computed every 5 msec. The base-

line algorithm was evaluated by forced alignment of the

complete test set of the 8 kHz resampled TIMIT database

(1344 sentences). Performance was determined by com-

puting the absolute distance (in msec) between the au-

tomatically determined and hand{labeled phone bound-

aries. The baseline segmentation accuracy was found to be:

f47:9% < 5msecg, f69:9% < 10msecg, f85:9% < 20msecg,
f95:9% < 40msecg, f98:4% < 60msecg. These results are
comparable with previous systems reported in [2, 3].

3.2. Con�dence Measure Evaluation

Speech data from four non{ideal environments were seg-

mented using the baseline system. These included : (8

kHz sampled) TIMIT degraded by additive computer fan

noise and additive car noise (5dB SNR), NTIMIT tele-

phone database [8], and CTIMIT cellular database [9]. The

PMC technique [13] was used to compensate the baseline

system for the additive noise environments while Cepstral

Mean Normalization (CMN) was used for the two tele-

phone environments. The con�dence measure was com-

puted for each segmented sentence. Fig. 2(A,C,E,G) illus-

trates scatter plots of the measure's output versus maxi-

mum phoneme boundary misalignment for each segmented

sentence. The measure was found to range in value from

0 to 6 with the largest output for sentences which con-

tained at least one severe boundary misalignment. This

is not surprising given that the numerator term in (8) is

large when phone durations deviate signi�cantly from the

duration distributions of the hand{labeled training data.

By varying the decision threshold, �, a trade{o� in de-

tecting a segmented sentence containing a severe misalign-

ment versus false alarm probability can be determined. In

Fig. 2(B,D,F,H) ROC curves are shown for the case of

detecting a sentence containing a boundary misalignment

of at least 100, 300, or 500 msec1. For example, 60% of

NTIMIT sentences containing a misalignment of at least

300 msec were detected with a false alarm rate of only 10%.

Once a desired operating point has been selected, the con-

�dence measure can be used to automatically alert the user

if a segmented sentence requires hand{correction. Table 1

illustrates system performance before and after environ-

mental compensation. For the CTIMIT database, 46.6%

of the labeled boundaries are within 60 msec if no compen-

sation is performed. With CMN compensation, the per-

formance improves to 79.5% within 60 msec. The decision

threshold for each environment was set such that the false

alarm probability was 0.1 for the case of detecting a seg-

mentation error of at least 100 msec. Next, sentences were

marked as either \acceptable" fC(D;L) < �g or \unac-

ceptable" fC(D;L) � �g and the alignment performance

for each condition was determined. For example, the \un-

acceptable" CTIMIT sentences had 66.2% of the phoneme

boundaries placed with 60 msec compared with 93.7% for

those marked as \acceptable". Similar results were ob-

tained for each of the three remaining environments.

There are several additional uses of the proposed con�-

dence measure. For example, one could initially segment a

noisy speech corpus using the noise/channel compensated

algorithm. Then, using the con�dence measure as a guide,

parsed phones from sentences with high{con�dence (i.e.,

high{quality) can be used to retrain the system for the

noisy environment. During a second pass, the retrained

system can then be used to obtain an improved time{

alignment of the entire corpus. Finally, on a third pass,

sentences marked as requiring hand{correction can then

be further examined.

4. CONCLUSIONS

In this paper a new duration{based con�dence measure

was formulated for automatic segmentation of speech

recorded in non{ideal environments. The proposed con-

�dence measure exploits the fact that, in noisy channel{

corrupted environments, poor time{alignments result in

phones whose durations deviate signi�cantly from that

expected of natural speech. The duration{based con�-

dence measure is compared to a threshold which is used

to provide user{feedback in an integrated automatic speech

time{alignment tool. The measure was tested in 2 additive

noise and 2 telephone channel environments and shown to

successfully separate low{quality from higher{quality pho-

netic transcriptions.
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Figure 2: Phoneme duration likelihood score C(D;L) versus
maximum within sentence phoneme boundary misalignment

(shown in A,C,E,G). In (B,D,F,H), probability of detecting

a gross segmentation error versus false alarm probability is
shown for 3 phoneme boundary tolerances. Results are shown
for detectability of 100, 300, and 500 msec boundary mis-
alignment. Noise conditions are shown for TIMIT sentences

degraded by Computer Fan Noise at a 5dB SNR (A,B), TIMIT

sentences degraded by Automobile Highway noise at a 5dB

SNR (C,D), NTIMIT telephone database (E,F), and CTIMIT

cellular database (G,H).

total Boundary Misalignment (msec)

# sent. � 5 � 10 � 20 � 40 � 60

(A) TIMIT + Computer Cooling Fan Noise (5 dB SNR)

baseline 1344 17.8 26.5 36.2 45.8 52.6

baseline, PMC 1344 32.7 50.1 66.3 79.2 85.7

C(D;L) < � 926 35.0 53.6 70.6 83.6 89.6

C(D;L) � � 418 27.2 41.6 55.9 68.7 76.1

(B) TIMIT + Automobile Highway Noise (5 dB SNR)

baseline 1344 35.8 53.2 69.0 82.4 88.8

baseline, PMC 1344 43.7 64.7 81.8 93.7 97.2

C(D;L) < � 1171 44.3 65.6 82.7 94.3 97.6

C(D;L) � � 173 39.0 57.4 74.6 88.4 93.8

(C) NTIMIT Telphone Speech Corpus

baseline 1344 25.1 40.3 56.0 67.3 72.8

baseline, CMN 1344 32.1 52.3 72.8 82.3 88.6

C(D;L) < � 1010 33.2 54.4 75.8 88.8 93.7

C(D;L) � � 334 28.4 45.2 62.8 74.8 80.9

(D) CTIMIT Cellular Telephone Speech Corpus

baseline 548 17.7 26.0 34.6 42.6 46.6

baseline, CMN 548 29.7 45.4 60.4 73.4 79.5

C(D;L) < � 274 36.1 55.3 73.1 87.1 92.6

C(D;L) � � 274 23.2 35.3 47.5 59.4 66.2

Table 1: Automatic segmentation accuracy for baseline
HMM time{alignment, noise/channel compensated HMM

time{alignment, and performance for sentences with con�-
dence scores below and above a con�dence threshold of �.
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