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ABSTRACT

In this study, a duration—based measure is formulated for
assigning confidence scores to phonetic time-alignments
produced by an automatic speech segmentation system.
For speech corrupted by additive noise or telephone chan-
nel environments, the proposed confidence measure is
shown to provide a reliable means by which gross segmen-
tation errors can be automatically detected and marked for
human hand correction. The measure is evaluated by com-
puting Receiver Operating Characteristic (ROC) curves to
illustrate the expected trade—off in probability of detecting
gross segmentation errors versus false alarm rates.

1. INTRODUCTION

In recent years there has been increased interest in transi-
tioning speech technologies from laboratory settings into
real-world environments. Consequently, the demand is
high for (1) new algorithms which mitigate the effects of
environmental noise, and (2) carefully collected develop-
ment and evaluation speech corpora recorded in realistic
environments. In order to provide phonetically labeled
databases, numerous methods for automatic segmentation
have been proposed for noise—free environments [1, 2, 3, 4].
In noisy environments, segmentation accuracy drops con-
siderably and the degree to which human experts must
hand—correct misplaced phonetic boundaries is dramati-
cally increased [5, 6, 7]. For example, in [7], it was shown
that for a Hidden Markov Model (HMM) based segmenta-
tion system, 86% of phoneme boundaries are placed within
20 msec of hand-labeled locations when time-aligning
noise—free speech. When computer fan noise is added at an
SNR. of 10 dB, the performance is reduced to 63% within
20 msec if noise compensation is not performed. In the
same study, compensation methods including speech en-
hancement and model adaptation were considered improve
noise robustness. Although compensation methods were
shown to improve time—alignment accuracy, there remains
a sizable performance gap between a compensated system
and the same system retrained from hand-labeled speech
recorded in the matched noisy environment. Consequently,
this paper considers methods of assigning levels of confi-
dence to automatically derived phonetic time—alignments
so that the efforts of manual corrections can be better fo-
cused.
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2. ALGORITHM FORMULATION
2.1.

Automatic segmentation of speech is a difficult task even
in noise—free environments. Often, the “correct” placement
of phonetic boundaries is highly subjective, especially dur-
ing continuous events such as vowel-to—vowel or vowel-to—
semivowel transitions. In noise, the boundaries between
phones become less sharp and some events are lost en-
tirely (e.g., fricatives spoken in the presence of wideband
noise distortion). Fig. 1 illustrates these common prob-
lems. For example, in Fig. 1A, the spectrogram for a (8
kHz sampled) phrase from the TIMIT database, “with
mock distaste” is shown with the corresponding hand-
labeled phonetic transcription. In Fig. 1B, the speech is
corrupted by additive computer cooling fan noise (5 dB
SNR). Time-alignments were generated by first compen-
sating the HMM-based system with the Parallel Model
Combination (PMC) technique [13]. By comparing the
two phonetic time-alignments it is clear that there are lo-
cations in which the accuracy of the boundary placement
can be very poor. Moreover, the resulting durations of
some phonetic segments are increased beyond what would
normally be expected in natural speech, while others are
severely compressed.

Impact of Noise on Segmentation

2.2,

There has been considerable interest in recent years to-
wards improving speech recognition by associating levels
of confidence to automatically recognized words [11, 12].
In general, these methods assign a score, C(w;), for the ith
recognized word w; such that C(w;) = 1 if the word has
been correctly recognized and C(w;) = 0 otherwise. Suc-
cessful measures for speech recognition should adequately
predict when recognition fails (i.e., the measure should cor-
relate highly with the actual system performance). As-
signing similar confidence scores to time-aligned speech
poses several new challenges. First, there exists a con-
tinuum of possible boundary misalignments rather than
a binary “correct/incorrect” recognition decision. Sec-
ond, some errors are more significant than others (e.g.,
consider misalignments involving stop—to—vowel compared
with vowel-to—vowel transitions). Ideally the confidence
measure should provide user feedback on the quality of
the boundary assigned to each phonetic transition. How-
ever, significant misalignment of one phoneme will result
in misalignments for neighboring phonemes. Therefore, de-
termining the exact location of the initial error is difficult.

Confidence Measure Formulation
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Figure 1:

corrupted speech.
aries.

Illustration of common problems encountered by an automatic segmentatlon system when time-aligning noise
In (A) a spectrogram of the phrase “with mock distaste”
In (B), the speech was degraded by additive computer fan noise (5 dB SNR) and automatically time-aligned by an

is shown with hand-labeled phonetic bound-

HMM-segmentation system which was compensated using Parallel Model Combination (PMC).

In addition, the measure should be relatively insensitive
to noise or recording conditions. Acoustic features such as
log-likelihood scores from HMMs are sensitive to mismatch
between training and testing environments. Furthermore,
measures of spectral variation have been shown to be sen-
sitive to noise [5]. Consequently, this paper introduces a
duration—based confidence measure which is assigned to
each sentence rather than on a per—phone basis.

Severe segmentation errors produce phonemes whose du-

rations deviate significantly from that of natural speech.

Therefore, to characterize this situation, we first assume

that natural phone durations are modeled using a 2-
ﬂ—ada—l
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where d,, is the duration variable (in msec), a and 3 rep-
resent parameters of the Gamma pdf for the nth phoneme
¢,,. Certainly, the duration densities will be dependent on
their surrounding phonetic context. In this paper, a set
of 18 left—context classes and 19 right—context classes de-
scribed in [2] are used in estimating the Gamma pdfs.

P(d” | Enya:ﬂ) = (1)

The observed phoneme duration, d.»s, as automatically
segmented by a computer algorithm can be modeled as,

dobs = dact + €1 + er, (2)

where d,c: represents the actual underlying phoneme du-
ration and e; and e, represent error made by the system
in placing the left and right phonetic boundaries. Here,
dact is modeled by a Gamma distribution while each of
the error terms are assumed to be statistically indepen-
dent and modeled by a zero—mean Gaussian distribution,
N(0,02). The total duration error is therefore given by,
{€ = e/ + e}, which also has zero-mean and variance
given by, {0} = 02 + 02 = 202}. Therefore,

P(£) =

1 —£* 3
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The confidence measure is formulated by posing a two—
hypothesis problem. First, a duration error threshold, 7, is
selected such that errors greater than 7 msec are considered
unacceptable while errors in duration of less than 7 msec

are considered acceptable. Since it is generally accepted
that phoneme boundary misalignments of more than 20
msec are considered gross errors, in this paper 7 = 20
msec. Hypothesis H1 models the case that dops resulted
due to a duration error of (|€| > 7) msec. Under H0, we
hypothesize that d,ps resulted due to a duration error of
(J€] < 7) msec. In other words, hypothesis 71 models the
condition that a significant alignment error has occurred
while H0 models less severe misalignments. Formally, the
detector is given by the likelihood ratio,

P(dovs | H1: €, 0, B,|E| > T)
P(dobs | HO : €, 0, B, |E] < T)°

Mdops) = 4)

where,
P(dops | H1: 4,0, B, |E| > 1) =
[ Pl = d £ 1.0, 0PN
[€]>7
P(dovs | HO: 4,0, B,|E| < T) =
[ Pl =~ £ |0 pPE)E
lE|<r

Substituting (5) and (6) into (4) yields,

fs\>
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Finally, substituting (1) and (3) into (7) and simplifying

dact = dobs & | K,Oé, B)P(g)dg
act = dobs - g | K,Oé, B)P(g)dg

A(dobS) = (7)

gives,
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where the numerator and denominator terms are evaluated
with the additional constraint that : (dops — &) > 0.

Assuming each of the observed durations are statistically
independent, an overall log-likelihood score can be com-
puted for a sequence of N phonemes L = {{1,0s,...,¢n}



with observed durations D = {di,d>,...,dn}. The pro-
posed confidence measure is computed for each parsed sen-
tence by averaging the log—likelihoods over the entire phone
sequence. Specifically,

C(D, L) = % 3 log A(dy)- )

Intuitively, C(D, L) will be small in value when the ob-
served phone durations deviate little from that expected
from hand-labeled speech. Thus, the proposed confidence
measure is compared with a threshold, ©, in order to de-
cide if the segmented sentence requires hand—correction,
{C(D, L) > ©}, or is acceptable, {C(D, L) < ©}.

3. ALGORITHM EVALUATION
3.1.

The segmentation algorithm used in this study was pre-
viously formulated in [7]. Each of 46 phoneme units are
modeled using a 5-state left—to-right continuous density
HMM. For each state, 16 mixture densities are used to
characterize the observation pdf. Here, observation vectors
consisting of 12 MFCC, 12 delta MFCC, and normalized
log-frame energy are computed every 5 msec. The base-
line algorithm was evaluated by forced alignment of the
complete test set of the 8 kHz resampled TIMIT database
(1344 sentences). Performance was determined by com-
puting the absolute distance (in msec) between the au-
tomatically determined and hand-labeled phone bound-
aries. The baseline segmentation accuracy was found to be:
{47.9% < bmsec}, {69.9% < 10msec}, {85.9% < 20msec},
{95.9% < 40msec}, {98.4% < 60msec}. These results are
comparable with previous systems reported in [2, 3].

Baseline Segmentation Algorithm

3.2.

Speech data from four non-ideal environments were seg-
mented using the baseline system. These included : (8
kHz sampled) TIMIT degraded by additive computer fan
noise and additive car noise (5dB SNR), NTIMIT tele-
phone database [8], and CTIMIT cellular database [9]. The
PMC technique [13] was used to compensate the baseline
system for the additive noise environments while Cepstral
Mean Normalization (CMN) was used for the two tele-
phone environments. The confidence measure was com-
puted for each segmented sentence. Fig. 2(A,C,E,G) illus-
trates scatter plots of the measure’s output versus maxi-
mum phoneme boundary misalignment for each segmented
sentence. The measure was found to range in value from
0 to 6 with the largest output for sentences which con-
tained at least one severe boundary misalignment. This
is not surprising given that the numerator term in (8) is
large when phone durations deviate significantly from the
duration distributions of the hand-labeled training data.

Confidence Measure Evaluation

By varying the decision threshold, ©, a trade—off in de-
tecting a segmented sentence containing a severe misalign-
ment versus false alarm probability can be determined. In
Fig. 2(B,D,F,H) ROC curves are shown for the case of
detecting a sentence containing a boundary misalignment

of at least 100, 300, or 500 msec'. For example, 60% of
NTIMIT sentences containing a misalignment of at least
300 msec were detected with a false alarm rate of only 10%.

Once a desired operating point has been selected, the con-
fidence measure can be used to automatically alert the user
if a segmented sentence requires hand-correction. Table 1
illustrates system performance before and after environ-
mental compensation. For the CTIMIT database, 46.6%
of the labeled boundaries are within 60 msec if no compen-
sation is performed. With CMN compensation, the per-
formance improves to 79.5% within 60 msec. The decision
threshold for each environment was set such that the false
alarm probability was 0.1 for the case of detecting a seg-
mentation error of at least 100 msec. Next, sentences were
marked as either “acceptable” {C(D,L) < O} or “unac-
ceptable” {C(D, L) > ©} and the alignment performance
for each condition was determined. For example, the “un-
acceptable” CTIMIT sentences had 66.2% of the phoneme
boundaries placed with 60 msec compared with 93.7% for
those marked as “acceptable”. Similar results were ob-
tained for each of the three remaining environments.

There are several additional uses of the proposed confi-
dence measure. For example, one could initially segment a
noisy speech corpus using the noise/channel compensated
algorithm. Then, using the confidence measure as a guide,
parsed phones from sentences with high—confidence (i.e.,
high—quality) can be used to retrain the system for the
noisy environment. During a second pass, the retrained
system can then be used to obtain an improved time-
alignment of the entire corpus. Finally, on a third pass,
sentences marked as requiring hand-correction can then
be further examined.

4. CONCLUSIONS

In this paper a new duration—based confidence measure
was formulated for automatic segmentation of speech
recorded in non—ideal environments. The proposed con-
fidence measure exploits the fact that, in noisy channel-
corrupted environments, poor time-alignments result in
phones whose durations deviate significantly from that
expected of natural speech. The duration—based confi-
dence measure is compared to a threshold which is used
to provide user—feedback in an integrated automatic speech
time—alignment tool. The measure was tested in 2 additive
noise and 2 telephone channel environments and shown to
successfully separate low—quality from higher—quality pho-
netic transcriptions.

5. REFERENCES

[1] T. Svendsen, F.K. Soong, “On the Automatic Segmenta-
tion of Speech Signals,” ICASSP, pp. 77-80, 1987.

[2] A. Ljolje, M.D. Riley, “Automatic Segmentation and La-
beling of Speech,” ICASSP, pp. 473-476, 1991.

[3] F. Brugnara, D. Falavigna, M. Omologo, “Automatic Seg-
mentation and Labeling of Speech based on Hidden Markov
Models,” Speech Comm., Vol. 12, pp. 357-370, 1993.

IFor additive car noise there is insufficient data points to plot
ROC curves for 300 and 500 msec alignment error detection.



MAXIMUM MISALIGNMENT (MSEC) WITHIN SENTENCE MAXIMUM MISALIGNMENT (MSEC) WITHIN SENTENCE MAXIMUM MISALIGNMENT (MSEC) WITHIN SENTENCE

MAXIMUM MISALIGNMENT (MSEC) WITHIN SENTENCE

TIMIT WITH ADDITIVE COMPUTER FAN NOISE (5d8 SNR) _TIMIT WITH ADDITIVE COMPUTER FAN NOISE (548 SNR) total Boundary Misalign ment (msec)
W ) = #sent.|<5 <10 <20 <40 <60
o / \ s (A) TIMIT + Computer Cooling Fan Noise (5 dB SNR)

LN e baseline 1344 [[17.8]26.5 [ 36.2 | 45.8 | 52.6

! ’ 300 msec

: baseline, PMC | 1344 |[32.7]50.1 | 66.3 | 79.2 | 85.7
o wsgen C(D,L)<© | 926 |/35.0|53.6 |70.6 | 83.6 | 89.6
[ : C(D,L)>© | 418 |[27.2|41.6 | 55.9 | 68.7 | 76.1

oar / - 500 msec

PROBABILITY OF DETECTION

ol A o HISALIGNIENT (B) TIMIT + Automobile Highway Noise (5 dB SNR)

baseline 1344 ||35.8|53.2 | 69.0 | 82.4 | 88.8

@ 0f--ait @ baseline, PMC | 1344 |[43.7| 64.7 | 81.8 | 93.7 | 97.2
boge oo AL B o,L) < | 1171 ||44.3| 65.6 | 82.7 | 94.3 | 97.6
PHONEME DURATION LOG-LIKELIHOOD PROBABILITY OF FALSE ALARM C(D,L) Z ® 173 39.0| 574 | 74.6 | 88.4 93.8

B TIMIT WITH ADDITIVE CAR NOISE (5d8 SNR) . TIMIT WITH ADDITIVE CAR NOISE (5B SNR) (C) NTIMIT Telphone SpeeCh COFPUS

baseline, CMN | 1344 |[32.1|52.3 | 72.8 | 82.3 | 88.6
C(D,L)<© | 1010 [[33.2|54.4 |75.8 |88.8|93.7

baseline 1344 |/25.1| 40.3 | 56.0 | 67.3 | 72.8

™y C(D,L)>0© | 334 ||28.4]45.2 6238748 | 80.9
é o e (D) CTIMIT Cellular Telephone Speech Corpus

) baseline 548 [[17.7]26.0 | 34.6 [ 42.6 | 46.6
, baseline, CMN | 548 |129.7|45.4 | 60.4 | 73.4 | 79.5
~ C(D,L)<© | 274 |[36.1]55.3|73.1|87.1] 926

C(D,L)>0© | 274 ||23.2]35.3|47.5|59.4 | 66.2

PHONEME DURATION LOG-LIKELIHOOD PROBABILITY OF FALSE ALARM

s o 0z o o6 o8 t Table 1: Automatic segmentation accuracy for baseline
HMM time-alignment, noise/channel compensated HMM

time—alignment, and performance for sentences with confi-

NTIMIT TELEPHONE SPEECH CORPUS NTIMIT TELEPHONE SPEECH CORPUS

100 msec
 MISALIGNMENT [4]

o. SJ /( . : 00 ‘misec
MISALIGNMENT
/ : (5]
oafl ! . 500 msec
MISALIGNMENT

PROBABILITY OF DETECTION
°

5 6 o 0.2 0.4 0.6 0.8 1

PHONEME DURATION LOG-LIKELIHOOD PROBABILITY OF FALSE ALARM [7]
CTIMIT CELLULAR SPEECH CORPUS CTIMIT CELLULAR SPEECH CORPUS
1 .
4 - =
10
0.8 —d .
B 100 msec [8]
08 , MISALIGNMENT
z ” .
[e} 7
B 07fy -
o . 300 ‘msec
103 & oep ! . MISALIGNMENT
| .
8 ool
z . 500 msec [9]
£ .
E : MISALIGNMENT:
2 .
&
[}
g 0.3
104 o K
01 H H
L
1 0 1 2 3 4 5 6 [ 2 4 0. 1
PHONEME DURATION LOG-LIKELIHOOD PROBABILITY OF FALSE ALARM

11
Figure 2: Phoneme duration likelihood score C(D, L) versus 1y
maximum within sentence phoneme boundary misalignment
(shown in A,C,E,G). In (B,D,F,H), probability of detecting
a gross segmentation error versus false alarm probability is 2]
shown for 3 phoneme boundary tolerances. Results are shown
for detectability of 100, 300, and 500 msec boundary mis-
alignment. Noise conditions are shown for TIMIT sentences
degraded by Computer Fan Noise at a 5dB SNR (A,B), TIMIT ~ [13]
sentences degraded by Automobile Highway noise at a 5dB
SNR (C,D), NTIMIT telephone database (E,F), and CTIMIT
cellular database (G,H).
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