
TOWARDS BETTER INTEGRATION OF SEMANTIC PREDICTORS IN
STATISTICAL LANGUAGE MODELING

Noah Coccaro* and Daniel Jurafsky†*

Department of Computer Science* Department of Linguistics†
University of Colorado at Boulder
{noah,jurafsky }@colorado.edu

ABSTRACT

We introduce a number of techniques designed to help integrate
semantic knowledge with N-gram language models for automatic
speech recognition. Our techniques allow us to integrate Latent
Semantic Analysis (LSA), a word-similarity algorithm based on
word co-occurrence information, with N-gram models. While
LSA is good at predicting content words which are coherent with
the rest of a text, it is a bad predictor of frequent words, has a low
dynamic range, and is inaccurate when combined linearly with
N-grams. We show that modifying the dynamic range, applying a
per-word confidence metric, and using geometric rather than lin-
ear combinations with N-grams produces a more robust language
model which has a lower perplexity on a Wall Street Journal test-
set than a baseline N-gram model.

1. INTRODUCTION

There has been a lot of recent work on augmenting n-gram lan-
guage models with other information sources such as longer dis-
tance syntactic, and semantic constraints (e.g. [8], [6]). In pre-
vious work, we [1] and others [2], [5] have suggested the use
of Latent Semantic Analysis (LSA) [3] as a model of semantic
knowledge to be applied to ASR. LSA is a model of word seman-
tic similarity based on word co-occurrence tendencies, and has
been successful in IR and NLP applications, such as spelling cor-
rection [7]. LSA is good at predicting the presence of words in the
domain of the text, but not good at predicting their exact location.
The N-gram model complements the LSA model by filling in the
missing information – where exactly the content words should go.

We have, however, also discovered that LSA is often a bad predic-
tor of the next word for several reasons. First, LSA is only good at
predicting words that are closely tied to a semantic domain. Sec-
ond, LSA produces cosines which tend to have a narrow dynamic
range – it is not trivial to map these cosine distances into a proba-
bility estimation. Furthermore, optimal combination of LSA and
N-gram probabilities is a difficult and unsolved problem.

Our solution to these problems involves three techniques to com-
bine the 2 estimators: a confidence metric for LSA, a modification
of the dynamic range of the LSA probabilities, and a more con-
servative evidence combination function. Our algorithm achieves
a significant reduction in perplexity on the Wall Street Journal
corpus.

2. LSA AS A LANGUAGE MODEL

LSA is a vector based model model of semantics based on word
co-occurrences. Words that tend to occur together, or with sim-
ilar words are considered to be semantically similar. The LSA
algorithm is trained on a corpus of documents. Documents here
are any semantically cohesive set of words, such as paragraphs,
articles from newspapers, newsgroup articles, etc. Since struc-
ture within the documents is not maintained, this is referred to as
a bag-of-words model. To build the LSA model for the experi-
ments in this paper, we used 81,553 articles from the Wall Street
Journal, years 1987–1989, containing of a total 35,126,006 word
tokens. We used the 20K vocabulary set from the WSJ0 distri-
bution as our vocabulary set. A term by document matrix is then
created, with rows corresponding to words in the vocabulary, and
columns to documents. Each entry in the matrix is a weighted
frequency of the corresponding term in the corresponding docu-
ment. This weighting is chosen to reduce influence of frequently
occurring terms, such as the function words and is described in
more detail in Section 4.

The next step is to reduce this very large sparse matrix into a
compressed matrix based on singular value decomposition, SVD.

M = T × S ×D′

The originalt × d matrixM is decomposed into a reduced rank
t× k term matrixT , a diagonal matrix of singular values,S, and
ad× k document matrixD.

Decreasingk, the number of dimensions retained, reduces the ac-
curacy with which M can be recreated from its component ma-
trixes, but importantly, it reduces the noise from the original ma-
trix. We chose 300 as a value fork in our experiments, as em-
pirical results in IR find that to be a good value. In this task, we
are only interested in the term matrix,T . Each row ofT is a
vector representation of the semantics of a particular word, in ak
dimensional space. We can now compare the semantic distance
between any two words by looking at the cosine of the angle (nor-
malized dot product) of the two corresponding rows (vectors) in
the matrixT . Figure 1 shows the closest and farthest words to the
word fishing, according to LSA. Furthermore, we can compare a
single word to a set of words, such as a newspaper article, or some
arbitrary context of a speech recognition system. The vectors for
each word in the set are combined to form a vector that represents
the centroid of that set, a point in thek dimensional semantic

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

arizonahitler taxi

boat

maine

salmon

fish

fishing

Sample of words and their angular distances
from "fishing" mapped onto 2D space

Figure 1: Plotted are angular distances of several words from
the word “fishing”, mapped into 2D. Some of the closest words
(“fishing”, “fish”) and the farthest words, (“hitler”, “taxi”) are
shown. The states are roughly ordered in terms of their impor-
tance to the fishing industry.

space. Then, the distance between the vector for any one word
and the centroid can be computed, yielding the semantic distance
between that word and the document. We use this comparison to
get a measure of semantic distance between a hypothesis of what
word comes next, and every word previous in the article currently
being recognized.

3. DERIVING LSA PROBABILITIES

In the previous section we showed how LSA has predictive pow-
ers for subsequent words in a semantically cohesive text, such as a
newspaper article. Now we show how to convert this into a prob-
ability estimate with relatively little computation. The simplest
method is to use the distance directly, and normalize such that
the least likely word has a probability of 0, and all probabilities
sum to 1 (see Equation 4.) However, this approach is too sim-
plistic and performs poorly, because the probabilities generated
have a very limited dynamic range — much smaller than that of
N-grams. The probabilities derived hover around1/VocabSize,
not differing enough have much impact. Our next technique over-
comes this problem.

We increase the dynamic range of the LSA probabilities by rais-
ing the cosines to some power first, then normalizing. We selected
an appropriate power,γ, by empirical testing, and found 7 to work
best on a held out dev-test set.

The context for our implementation is defined as all the words,
C in the WSJ article before the current word. This allows us to
draw on the natural semantic coherence of a newspaper article
while still allowing on-line predictability of the next word. First,
the centroid,~C of the vectors corresponding to the wordsC in the
context is computed

~C =

i∑
t=1

~wt (1)

The cosine is computed between the LSA vector for theith word

in the document,wi and the centroid of the vectors of all the
words in the context,C.

cos(~wi, ~C) =
(~wi · ~C)

‖ ~wi‖‖~C‖
(2)

We find the smallest cosine between the context and any wordWj

which ranges over theN vocabulary items. This is computed for
normalization purposes.

MinCos(C) =
N

min
j=1

cos(~Wj, ~C) (3)

Then a first estimate of the LSA probability is computed by taking
the cosine between this word and the context, subtracting out the
MinCos to calibrate the lowest value at zero, and then normalizing
by the sum of the cosines of all words in the vocabulary with the
context

P̂L(wi|C) =
cos(~wi, ~C)−MinCos(C)∑N

j=1
cos(~Wj, ~C)−MinCos(C)

(4)

Finally, the probability is reestimated by raising it to a power,γ
and renormalizing.

PL(wi|C) =
P̂L(wi|C)

γ∑N

j=1
P̂ (wj|C)γ

(5)

Introducingγ greatly improved results. The baseline perplexity
computed solely by the bigram model on a held out development
test set was 147.8. Adding in the LSA model without the power
factor, (that is,γ = 1) we showed a small decrease in perfor-
mance, to 148.5. However, using aγ of 7.0 decreased the per-
plexity to 130.4, an 11% improvement. (See Table 2 for more
details of the experiment.)

4. LSA CONFIDENCE METRIC

One problem with LSA is that compared to the N-gram it is a
poor predictor of function words (‘the’, ‘of’), and other common
words with uniform distribution over contexts. But LSA does
well at predicting the presence of content words which are spe-
cific to a context, even if they have not occurred yet in the doc-
ument (e.g. ‘soft’ (as in ‘soft drink’) in the context of a WSJ
story about Coca-Cola). We introduce a confidence metric asso-
ciated with each word that helps determine to what degree the
LSA model is effective at predicting that word. Our confidence
metric is a ‘global term weighting’ found to be useful in IR appli-
cations: the entropy of the frequency of a word over all documents
in the training corpus [4]. Thus, the LSA confidence for termi is
calculated by

LSA Confidencei = 1 +

∑ndocs
j=1

P (j|i) log(P (j|i))
log(ndocs)

wherendocs is the number of documents in the corpus, and
P (j|i) is the likelihood of documentj given that termi occurs
in it j:

P (j|i) =
Count of termi in documentj

Count of termi in whole corpus

LSA LSA
Word N-grm LSA Conf. Word N-grm LSA Conf

coca - - - investigation 272 35947 .32
cola - - - into 13 38902 .14
enterprises 9 210 .39 alleged 588 19267 .33
incorporated 3 13889 .10 antitrust 402 11220 .41
said 7 43672 .05 violations 31 12065 .38
its 36 23377 .06 in 20 14420 .47
atlanta 7255 1154 .37 the 4 12192 .04
coca 6392 60 .50 soft 8406 93 .39
cola 1 70 .49 drink 3 111 .45
bottling 18 69 .57 industry 33 26139 .19
company 5 7825 .07 by 239 10678 .07
unit 93 19348 .15 a 15 12813 .04
is 41 28504 .07 federal 210 13387 .17
a 11 19433 .04 grand 67 15935 .37
target 2228 18611 .31 jury 2 10745 .38
of 4 12521 .04 in 7 10098 .05
an 147 23809 .07 atlanta 1110 910 .37

Table 1: Sample perplexities assigned by LSA and bigram models and LSA confidences, for a sentence in WSJ.Bold-faced values
indicate places where LSA was a better predictor of the correct word than the N-gram model.

The LSA confidence ranges from a low of 0.04 forof to 0.91 for
kevlar. Words that are very promiscuous, occurring in many doc-
uments without regard to their content (high entropy, uniform dis-
tribution) will get a very low LSA confidence value, while words
that are less promiscuous, usually occurring with the same family
of words, will get a higher confidence value.

In Table 1, we see that LSA often incorrectly assigns a low prob-
ability (high perplexity) to words, often much lower than an N-
gram model does. However, where LSA outperforms the bigram
model, we see that the term being predicted has a relatively high
LSA confidence.

In the next section we will show how the LSA confidence mea-
sure can be used to discount the LSA probability when combin-
ing it with the N-gram predictor. For these words, such asof, the
context that LSA uses to base its judgment on is not nearly as dis-
criminative as the previous word, which the N-gram model uses
to predict these words. As we will see, the LSA confidence model
gave a lower perplexity on our WSJ development set than the
baseline bigram model. Table 2 shows that the perplexity com-
puted with the variable confidence was 130.4, an improvement
over the bigram-only baseline of 147.8.

We suspected that part of the improvement from the LSA confi-
dence model was due to a general discounting of the LSA prob-
ability rather than the per-word effect. We thus ran another ex-
periment to test these two factors. We computed the average LSA
confidence for all terms in the development test set, and used that
constant factor (0.09) as a weight. Theγ factor was held the same,
7.0. Perplexity in this test was 139.7, demonstrating the variable
LSA confidence did improve results.

5. COMBINING LSA & N-GRAMS

Since the N-gram model is still a good predictor of words, we
want to guarantee that it contributes at least half the probability
mass to predicting the next word. Therefore, we divide the LSA
confidence in half, such that it ranges from 0 to 0.5. Thus, for
words that LSA is very confident about predicting, likekevlar,

with an LSA confidence of 0.91, the LSA and N-gram models
will be about equally considered.

λi =
LSA Confidencei

2

We now address the problem of combining our modified LSA
estimator with the N-gram probability. We found simple linear
combination to be inadequate (Equation 6), partly because the
LSA estimator often predicts words that are syntactically disal-
lowed. We need a non-linear combination function that gives a
much higher probability when the two models agree — that is,
when the predicted word is both syntactically and semantically
likely — and gives a low probability if either estimator believes
a word unlikely. We chose the geometric mean as our non-linear
combination function (Equation 7). When the LSA confidence is
high, this function forces the N-gram and LSA model to agree a
word is likely in order to get a high resulting probability. When
the LSA confidence is low, the need for agreement is reduced.

Consider the case of the bigram“coca atlanta” which is a very
unlikely bigram. We do not want LSA to increase the likelihood
of this bigram just because the termatlantais semantically related
to the rest of the context. The bigram model assigns a very low
probability to this word sequence. The geometric mean in such a
case would yield a very low probability, but the arithmetic mean
would incorrectly give a significant probability to this bigram due
to the LSA influence. Equation 6 shows this sub-optimal linear
equation we tested:

P (wi|w1, w2...wi−1) =

(PL(wi|w1,w2,...wi−2)∗λi)+(PB(wi|wi−1)∗(1−λi))∑
N

j=1
(PL(Wj |w1,w2,...wi−2)∗λj)+(PB(Wj |wi−1)∗(1−λj))

(6)

The final equation that we used, which includes the LSA dynamic
range adjustment, the LSA confidence, and the geometric combi-
nation of the LSA and N-gram probabilities is shown below:

P (wi|w1, w2...wi−1) =

PL(wi|w1,w2,...wi−2)λiPB(wi|wi−1)1−λi∑
N

j=1
PL(Wj |w1,w2,...wi−2)

λjPB(Wj |wi−1)
1−λj

(7)

As in earlier equations,wi is theith word to be recognized,Wj

is thejth term in the vocabulary,N is the number of words in the
vocabulary,PL is the word probability according to LSA, and
PB is the word probability according to the bigram model.

0
0.5

1

0
0.5

1
0

0.5

1

Ngram Probability

Geometric Mean with lambda =0

LSA Probability

R
e

s
u

lt
in

g
 P

ro
b

a
b

il
it
y

0
0.5

1

0
0.5

1
0

0.5

1

Ngram Probability

Arithmetic Mean with lambda =0

LSA Probability

R
e

s
u

lt
in

g
 P

ro
b

a
b

il
it
y

0
0.5

1

0
0.5

1
0

0.5

1

Ngram Probability

Geometric Mean with lambda =0.25

LSA Probability

R
e

s
u

lt
in

g
 P

ro
b

a
b

il
it
y

0
0.5

1

0
0.5

1
0

0.5

1

Ngram Probability

Arithmetic Mean with lambda =0.25

LSA Probability

R
e

s
u

lt
in

g
 P

ro
b

a
b

il
it
y

0
0.5

1

0
0.5

1
0

0.5

1

Ngram Probability

Geometric Mean with lambda =0.5

LSA Probability

R
e

s
u

lt
in

g
 P

ro
b

a
b

il
it
y

0
0.5

1

0
0.5

1
0

0.5

1

Ngram Probability

Arithmetic Mean with lambda =0.5

LSA Probability

R
e

s
u

lt
in

g
 P

ro
b

a
b

il
it
y

Figure 2: Above are shown the probability spaces for combining
LSA and N-gram probabilities, with three different values of the
LSA confidence metric

The graphs in Figure 2 demonstrate the resulting probability
space from using geometric and arithmetic means. Consider the
point on these graphs where the LSA probability is high, and the
N-gram probability is nearly zero. Note that the geometric mean
assigns this case a low probability, while the arithmetic mean
gives it a relatively high probability. On the left is geometric
mean, on the right, arithmetic mean, with increasing LSA con-
fidence as one goes down.

Testing with the arithmetic mean showed significantly worse re-
sults than when testing with the geometric mean, yielding per-
plexity of 143.1 vs. 130.4 on the development test.

We now tested our final model on a separately held out test set.
We again trained on 35 million words from WSJ 1987–1989, but
now tested on 234,000 words from WSJ years 1995 and 1996
found in the NAB news corpus. We showed a 12% decrease in
test set perplexity when using the LSA model, going from a per-
plexity of 191 to a perplexity of 168. Table 2 shows this result
and intermediate dev test results.

6. CONCLUSIONS AND FUTURE WORK

We have shown how three methods which require relatively lit-
tle computation can significantly increase the performance of a
language model that incorporates semantic information. Our se-
mantic confidence measure improved performance by accurately
predicting when a semantic model would be beneficial. Increas-

Dev Test
Method PPL
Bigram 147.8
Bigram + LSA + Confidence + Geometric Mean 148.5
Bigram + LSA + Confidence +γ + Arithmetic Mean 142.1
Bigram + LSA +γ + Geometric Mean 139.7
Bigram + LSA + Confidence +γ + Geometric Mean 130.4

Held out Test Set
Method PPL
Bigram 191
Bigram + LSA + Confidence +γ + Geometric Mean 168

Table 2: Resulting Perplexities on development test set, and on a
separately held out test set.

ing the influence of a metric with low dynamic range proved to
be important. Finally, a geometric combination of evidence favors
situations where the two orthogonal models agree.

One further modification of the system would be to add an N-
gram confidence metric. This would help in cases where the LSA
prediction is wrong despite a high LSA confidence, e.g. for the
wordcola in Table 1. We are currently investigating a factor based
on the entropy of the N-gram distributions for a given prefix.

7. ACKNOWLEDGMENTS

Thanks to Tom Landauer for inspiring conversations that led to
these ideas, Apple Computer for funding an internship that started
the implementation of this work, Andreas Stolcke for comments
and providing the SRI LM toolkit we used, Jim Martin and Wayne
Ward for providng useful feedback, and the NSF via NSF IRI-
9704046 and NSF IIS-9733067 to the second author.

8. REFERENCES

1. J. Bellegarda, J.W. Butzburger, Y. Chow, N. Coccaro, and
D. Naik. A novel word clustering algorithm based on latent
semantic analysis. InProceedings of ICASSP-96, 1996.

2. Jerome Bellegarda. A latent semantic analysis framework for
large-span language modeling. InEurospeech, 1997.

3. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Lan-
dauer, and R. Harshman. Indexing by latent semantic analy-
sis. Journal of the American Society for Information Science,
41(6):391–407, 1990.

4. Susan. T. Dumais. Improving the retrieval of information from
external sources.Behavior Resarch Methods, Instruments and
Computers, 23(2):229–236, 1991.

5. Y. Gotoh and S. Renals. Document space models using latent
semantic analysis. InEurospeech, 1997.

6. R. M. Iyer.Improving And Predicting Performance Of Statisti-
cal Language Models In Sparse Domains. PhD thesis, Boston
University, 1998.

7. M. P. Jones and J. H. Martin. Contextual spelling correction
using latent semantic analysis. InProceedings of the Fifth
Conference on Applied Natural Language Processing, 1997.

8. R. Rosenfeld. A maximum entropy approach to adaptive sta-
tistical language modeling.Computer, Speech and Language,
1, 1996.

