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ABSTRACT

This paper addresses the topic of performing e�ective
concatenative speech synthesis with a limited database
by proposing methods to smooth the transitions between
speech segments. The objective is to produce natural-
sounding speech via segment concatenation when formants
and other spectral features do not align properly. We pro-
pose several methods for adjusting the spectra between
waveform segments selected for concatenation. Techniques
examined include optimal coupling, waveform interpola-
tion, linear predictive pole shifting, and psychoacoustic clo-
sure. Several of these algorithms have been previously de-
veloped for either coding or synthesis, but our application
of closure for segment processing is novel. After spectral
smoothing, the �nal synthesized speech can better approx-
imate the desired speech characteristics and is continuous
in both the time domain and spectral structure.

1. PROBLEM

Many concatenative text-to-speech systems produce con-
tinuous speech by selecting waveform segments from
databases with a large number (i.e., +25,000) of segments
with varied characteristics [5, 6]. Direct concatenation of
segments from such a large database can yield high speech
quality since the database contains enough sample seg-
ments to include a close match for each desired segment,
but this technique is costly in terms of database collec-
tion, search requirements, and segment memory storage.
Other concatenative synthesis systems use a set of spe-
cially selected diphones with boundaries set at the cen-
ters of phonemes where formants are stable. In both ap-
proaches, the formants may not align perfectly, but the
spectral alignment is generally acceptable.

With a small database, however, direct concatenation of
available speech segments sometimes produces a series
of segments which fail to match the desired parameters.
Time-domain techniques can easily adjust the prosodic
characteristics, but additional processing is needed to spec-
trally align the selected speech segments and avoid discor-
dance. In the absence of spectral smoothing, formants and
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other spectral characteristics will change abruptly at the
transitions between concatenated speech segments. These
spectral discontinuities will be present in most concate-
native synthesis systems but will be more noticeable in a
small-database environment.

Algorithms have been formulated to adjust the pitch to
be continuous between segments; however, the remainder
of the spectral structure is not so easily modi�ed. The
concatenation of segments is time-synchronized by pitch
peaks, and the Pitch-Synchronous Overlap Add (PSOLA)
algorithm [9] adjusts the duration and fundamental fre-
quency. Merely averaging the signal in the time domain
does not cause the formants to match correctly in the
frequency domain, however, and thus spectral smoothing
must be tackled as a special problem.

In the absence of spectral smoothing, unnatural spectral
transitions will arise. For example, spectral peaks will sud-
denly appear and disappear. Peaks will fade and appear
at nearby frequencies rather than shifting between frequen-
cies. Studies have shown that smooth changes in frequency
and spectrum are interpreted as changes within a single
speaker, whereas sudden changes are interpreted as being
a change in speaker [8]. A spectral smoothing scheme can
eliminate these audibly unnatural transitions. The goal
of this study is therefore to propose several spectral-based
smoothing and adjustment algorithms to address spectral
discontinuity in segment-based concatenative synthesis.

2. SPECTRAL SMOOTHING

We have developed several methods in both the time and
frequency domains to smooth transitions between concate-
nated speech segments. These approaches include simple
spectral averaging, more complex formant-adjusting meth-
ods, and a psychoacoustic technique. We consider existing
techniques and improvements to demonstrate their appli-
cation to spectral smoothing for concatenation.

We have implemented several approaches to spectral
smoothing and detail here only those methods which have
yielded the best results. Although a few researchers have
studied smoothing techniques (e.g., audio morphing [10]),
the �eld remains fresh and typically only common existing



speech processing algorithms (e.g., linear prediction tech-
niques described below) are employed. Several of these
techniques were originally developed for other purposes,
including interpolation for audio coding and voice mod-
i�cation, and they are not generally applied to spectral
smoothing for concatenative synthesis. Here we describe
only the spectral smoothing applications of the algorithms
and do not discuss their original applications.

Our general approach to smoothing is to take one frame of
speech from the edge of each segment and interpolate be-
tween them. It is thus important that the edge frames are
good representatives of the sound (see Section 3). We per-
form linear interpolation in di�erent domains between the
two frames, though we also suggest cubic spline interpola-
tion as an alternative. The frames are pitch-synchronous
where one frame is two pitch periods long; this synchro-
nization is important for some interpolation methods.

One important issue of spectral smoothing is determin-
ing in what circumstances the smoothing should be per-
formed. If two segments have a su�ciently close spec-
tral match, then the distortion introduced by smoothing
techniques may outweigh the performance gain. Moreover,
many smoothing techniques are inappropriate for use with
unvoiced speech.

Another issue is determining the best time span over which
to interpolate. The pitch will remain continuous if data is
inserted equal to an integer number of pitch periods. Our
experiments showed that three to �ve periods generally
works well; however, more studies should be done to de-
termine the proper number of pitch periods for di�erent
circumstances.

3. OPTIMAL COUPLING

It is common in concatenative synthesis that the bound-
aries of speech segments are �xed, but the optimal cou-
pling technique allows the boundaries to move to provide
the best �t with adjacent segments [2]. A measure of mis-
match is tested at a number of possible segment bound-
aries until the closest match is found. While any form of
measure may be used, for the sake of improving spectral
quality, using a spectral discontinuity measure is appropri-
ate. Measures considered include mel-frequency cepstral
coe�cients (MFCC) and the auditory-neural based mea-
sure (ANBM) [4]. It is not necessary to implement opti-
mal coupling to perform spectral smoothing, but it does
provide some improvement at a small cost.

4. WAVEFORM INTERPOLATION

Waveform interpolation (WI) is a speech-coding technique
which takes advantage of the gradual evolution of the shape
of pitch period waveforms. In WI, a waveform is interpo-
lated in either the time or frequency domains. In order to
conserve space in coding, a signal is typically transmitted
as quantized frequency coe�cients for separate rapidly and
slowly evolving components [7]. The waveform is typically

one pitch period long, but the length may be an integer
number of periods.

Though developed for coding purposes, WI can also be
used for spectral smoothing. In this case, the waveform
is interpolated between the frames at the edges of speech
segments to create smoothed data to insert between them.
The concept is the same as for coding, but the end goal
is di�erent. For synthesis, the original waveform can be
kept intact for interpolation rather than compressing the
data via quantization. When the original waveforms are
available, interpolating in either the time or the frequency
domain yields identical results. A new pitch period of the
desired length is constructed by averaging the amplitudes
of the periods of natural speech at the same relative posi-
tions within the waveforms.

In addition to direct use for calculating smoothed speech
frames, WI can also be applied for residual interpolation.
Linear prediction methods (see Section 5) concentrate on
interpolating the spectral envelope, but the residual sig-
nal must also be generated. Rather than using a generic
pulsed excitation or a single residual appropriate for the
speaker, we use WI to interpolate between the residuals of
the bordering frames of natural speech.

5. LP TECHNIQUES

Linear prediction (LP) interpolation techniques are often
used with the intention of smoothing LP-�lter coe�cients
in LP coding (LPC). The basic strategy is to model the
signal as spectral and excitation components and to adjust
each component separately. Here, we discuss interpolating
the LP spectral parameters in any of several domains, while
the residual is interpolated using waveform interpolation
(see Section 4).

There are various representations of the LP parameters:
prediction coe�cients (PC), re
ection coe�cients (RC),
log area ratios (LAR), arcsine of the re
ection coe�cients
(ASRC), cepstral coe�cient, line spectrum pairs (LSP),
line spectral frequency di�erences (LSFD), autocorrelation
coe�cients (ACF), impulse response (IR). In speech cod-
ing, these various LPC parameters can be interpolated so
that less data can be transmitted, but in the case of spec-
tral smoothing we interpolate so that we can construct
new data to �ll in the gaps between existing segments of
speech. Research in coding shows that some representa-
tions perform better for interpolation than others. Some
representations (e.g., LPC coe�cient, cepstral coe�cient,
and impulse response) can yield an unstable LPC synthesis
�lter after interpolation, and thus they generally are not
used for interpolation. The LSP representation is gener-
ally accepted as giving the best performance in terms of
spectral distortion, and it always yields stable �lters after
interpolation [7].

In speech coding, the LP poles are rarely shifted directly
in the z-plane because the parameters are usually stored
and transmitted in another representation. The line spec-
trum pair (LSP) representation, also known as line spectral
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Figure 1: Example LP pole shifting scenario.

frequency (LSF), is often used for speech coding. Interpo-
lation between LSPs has been used not only for coding but
also for synthesis and even spectral smoothing. For wave-
form synthesis, LPSs lose the compression advantage over
the direct use of poles or other representations.

When LP poles are shifted, pole positions should not be di-
rectly linearly interpolated in the complex plane. Instead,
the magnitude and phase of the poles should be interpo-
lated separately. Interpolating in the complex plane can
produce values which are not truly intermediate between
the original poles, but interpolating in the magnitude-
phase domain produces more reasonable results. The mag-
nitude of a pole relates to the bandwidth of a corresponding
formant, while the angle relates to the frequency. Ideally,
each LP pole would correspond to a single formant, but in
practice multiple poles will a�ect the location and band-
width of each formant. Thus, although pole shifting modi-
�es formants, it can have undesired e�ects such as formant
bandwidth spreading.

In pole shifting, a common problem arises when one frame
of speech has more real poles than the adjoining frame.
Figure 1 illustrates this scenario. One solution is to convert
to a domain where each pole has a complex conjugate [3].
Our solution is to �rst perform a matching of conjugate
pairs that results in the minimum total distance between
matched pairs. For each remaining unmatched conjugate
pair, we select the nearest single real pole as a match.

6. CONTINUITY EFFECT

The continuity e�ect is a psychoacoustic phenomenon.
When two sounds are alternated, a less intense masked
sound may be heard as continuous despite being inter-
rupted by a more intense masking sound. The sensory
evidence presented to the auditory system does not make
it clear whether or not the obscured sound has continued.
Psychologists call this e�ect \closure" [1, 8].

Perceptual closure occurs when a missing gap in sound
is �lled by a noise or other sound that masks the miss-
ing sound. The visual counterpart to auditory closure is

looking at a scene while moving past a picket fence; the ob-
server assumes that the scene continues uninterrupted be-
hind the fence boards even though only part of the scene
is visible at any one time. In auditory perception, illu-
sory continuity requires that the masking sound be near
enough in frequency to the missing sound for simultaneous
masking to occur according to the neural response of the
peripheral auditory system.

The continuity e�ect has also been shown to work for
speech signals alternated with noise.A series of studies has
shown that bursts of noise interrupting speech at the rate
used in phone or diphone concatenation (about 6 per sec-
ond) is near a minimum in the e�ects of the noise on
speech comprehension. Moreover, with this interruption
frequency and the desired fraction of time spent on speech
vs. noise (91%), listener tests revealed a very high word ar-
ticulation rate. In some circumstances, interrupting noise
has been shown to actually increase intelligibility [1, 8].

In the case of spectral smoothing, the continuity e�ect can
be employed by adding noise between speech segments. Al-
though closure has not been previously applied to speech
synthesis, the concept is not entirely foreign: in some audio
systems, large burst errors are sometimes �lled with white
noise. We take the concept a step further by spectrally
shaping the noise so that it contains only the spectral enve-
lope necessary to possibly contain any intermediate sound.
The listener's perception �lls in any gaps so that it seems
as though speech is being produced within the noise, and
the perceived speech is continuous with the preceding and
following existing speech.

Figure 2 shows an example of a frequency-domain �lter
for inserted noise. The spectral envelopes of the two orig-
inal speech frames are compared. The �lter is constructed
to meet the maximum of the two envelopes at all points
and to interpolate between any large peaks (presumably
formants) between the two spectra. Gaussian white noise
is passed through this �lter to create shaped noise that
will mask any hypothetical speech between the two natu-
ral frames without introducing more noise than necessary
for the auditory masking.

7. RESULTS & EVALUATIONS

Initial testing and algorithm development was done with
simple tests that involved concatenating sets of two phones.
Later testing was done by integrating the promising
schemes into a concatenative speech synthesis system. The
waveform concatenation system used for evaluating these
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Figure 2: Example noise envelopes for continuity e�ect.
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Figure 3: Spectrograms of the phrase \carry an oily rag":
(a) naturally produced and (b)-(e) concatenated speech.
Solid vertical lines mark segment boundaries.

smoothing algorithms is designed for synthesis when only a
limited amount of training data is available. These meth-
ods assume a data corpus of only about four hundred phone
segment waveforms per speaker as is generally found in the
TIMIT database. In each of the reported cases, the syn-
thesizer incorporates optimal segment coupling.

Figure 3 shows one example spectrogram from each tech-
nique for the same concatenated speech segments: \carry
an oily rag." Note that the formants tend to be smoother
and more continuous in several of the techniques, especially
with LP pole shifting.

We are also taking objective measurements from listener
tests. Table 1 shows the preliminary results from a larger
formal listening test. Four expert listeners were asked to
indicate their preferences in terms of naturalness and intel-
ligibility for four di�erent words and phrases. The listeners

Algorithm Natural Intelligible

Natural Speech 1.13 1.38

Raw Concatenation 2.75 2.66

Waveform Interp. 3.09 3.22

LP Pole Shifting 3.75 3.53

Continuity E�ect 4.41 4.34

Table 1: Listener preferences (lower values are better).

ranked spectral smoothing algorithms algorithms as com-
pared with raw concatenated speech (without smoothing)
and with natural speech. In general, listeners seemed to
dislike the noise of the continuity e�ect and the audible
spectral components of LP pole shifting. The scores re-
inforce the conclusion that spectral smoothing will some-
times yield improvements yet sometimes make the result-
ing speech worse.

8. CONCLUSION

The net results of the proposed algorithms are mixed.
Some resulting smoothed synthesized phrases demonstrate
noticeable improvements over standard techniques applied
to small databases, while other phrases are of lesser qual-
ity. The �nal speech has smoother, more continuous for-
mants and is sometimes more natural-sounding than di-
rect concatenation of selected segments without process-
ing. Therefore, when properly employed, spectral smooth-
ing techniques can improve the results of concatenative
speech synthesis with a limited database.
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