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ABSTRACT

We study the effects of modeling tone in Mandarin speech
recognition.  Including the neutral tone, there are 5 tones in
Mandarin and these tones are syllable-level phenomena. A
direct acoustic manifestation of tone is the fundamental
frequency (f0).  We will report on the effect of f0 on the
acoustic recognition accuracy of a Mandarin recognizer.  In
particular, we put f0, its first derivative (f0′), and its second
derivative (f0′′) in separate streams of the feature vector.
Stream weights are adjusted to investigate the individual
effects of f0, f0′, and f0′′ to recognition accuracy. Our results
show that incorporating the f0 feature negatively impacted
accuracy, whereas f0’ increased accuracy and f0’’ seemed to
have no effect.

1. INTRODUCTION

In contrast to most European languages, Mandarin Chinese
uses tones for lexical distinction.  A tone occurs over the
duration  of a syllable.  There are 4 lexical tones and 1 neutral
tone.  Homonym confusability in Mandarin is very high, and
the situation is compounded by not distinguishing among the 5
tones.

An effective Mandarin speech recognizer thus needs to be able
to recognize the 5 tones in addition to the usual phonetic
inventory of the language. The most direct acoustic
manifestation of tone is fundamental frequency (f0).   In this
paper, we report our experiments with incorporating f0 and its
first and second derivatives (f0′, f0′′) into the feature vector.
We will present the collective effect of all 3 f0 features
together as well as the individual effects of each of the
features.  We put f0, f0′, and f0′′ into 3 separate streams with
the freedom to individually turn on or off the effect of a stream.
Thus, we are able to explore the individual contribution of each
stream toward recognition accuracy.

Others have worked on incorporating tone into Mandarin
speech recognition.  Liu et al. [1] used f0 features to do a large
vocabulary continuous Mandarin dictation application.  His
results will be reported in Section 4.  Lyu et al. [2]’s approach
differs in that they built a system in which speech is pre-
processed to hypothesize syllable boundaries.  These
hypothesized syllables are then used in a parallel network to
identify the base syllable and tone.

In this paper, we explore the effect of f0 features toward
accuracy.  We describe the database in Section 2.  In Section 3,

we present a baseline experiment involving no f0 features.  In
Section 4, we describe a fast and accurate f0 tracker used in our
experiment involving f0 features.  In Section 5, we look at the
individual contributions of each f0 feature toward accuracy by
varying stream weights.  Section 6 concludes with some ideas
on how one might better model Mandarin tones.

2. DATABASE

The speech data were recorded in China using a head-mounted,
uni-directional, noise-canceling microphone and sampled at 16
kHz.  For the experiments reported in this paper, 54 speakers’
data representing about 20 hours of speech were used.  Five-
sixths of the speech were recorded in a quiet office
environment; however, one-sixth of the data were recorded in a
noisy office environment.  The utterances were continuous,
read speech.

2.1. Sentence Corpus

Thousands of sentences were selected and edited for the
recording prompts.  These sentences came from newspapers,
magazines, and novels published in China.  The diversity in
sentences guarantees a wide range of phonetic, lexical, and
prosodic content.  Sentences were chosen based on readability
and phonetic coverage.

2.2. Speaker Demography

Approximately half of the speakers were female and half male.
By age, 65%  were 18-30 years old, 15% were 31-40 years old,
14% were 41-50 years old, and 6% were 50-65 years old.

China is the most populous country in the world.  Many
languages and accents exist.  Thus, it is of utmost importance
to choose speakers from diverse geographic and lingual
origins.  The Beijing accent was focused upon, however,
because the official accent is found in Beijing.  30% of the
speakers were born in Beijing.  20% of the speakers identified
Mandarin as their native language; 80% used Mandarin at
home.  Other speakers came from other parts of China,
including Shanghai, Guangdong, Fujian, and Sichuan.  Of
course, all the speakers spoke Mandarin fluently

2.3. Utterance Verification

Each utterance was verified for accuracy.  Differences in
accents presented many ambiguities when verifying.  The rule
used was that if the variation in speaking was due to a dialectal
accent, then the utterance was considered “good”; however, if



the variation was unintended, then the utterance was
considered “bad”.  For example, many southern accents do not
have retroflexion, so the phonemes /ch, sh, zh/ were pronouced
as [c, s, z], respectively.  Sentences pronouced by southerners
without retroflexion were "good" but the same sentences
pronounced by northerners without retroflexion were "bad".
Another example is the retroflexed ending: northerners
pronouce many words with a retroflexed "er" at the end.
Sentences pronounced in this way by northerners were
considered “good”.

3. BASELINE EXPERIMENT

3.1. Phonetic Inventory

There are 32 phonemes in Mandarin, grouped below by broad
phonetic class:

• Vowels a, E, i, ih, o, u, U, u:

• Semivowels r, l, w, y

• Nasals m, n, ng

• Fricatives f, s, sh, x, h

• Affricates z, c, zh, ch, j, q

• Stops b, d, g, p, t, k

The acoustic model inventory consisted of tonal vowels and
atonal consonants.  There were thus 8 vowels x 5 tones/vowel =
40 tonal vowels.  Adding 24 consonants made a total of 64
monophone models to train.  The consonants were specified to
be atonal because most of the tone information is carried in the
vowel portion of a syllable.

3.2. Training

Monophone models were built using Entropic’s HMM ToolKit
(HTK) [3].  In the baseline experiment, we used 13 Mel-
Frequency Cepstral Coefficients (MFCCs) and their first and
second derivatives, making a feature vector that was 39
elements long. f0 features were not used for the baseline.  Thus,
the tonal vowels were distinguished by the MFCCs, which are
not expected to be helpful in distinguishing tone since f0
information is thrown away in the computation of the MFCCs.

Models were built using a flat-start approach in which each
model was seeded by the global means and variances
calculated from all the training data.  The training data
consisted of 48 speakers’ speech and approximately 14,000
utterances.  The silence and short pause models were refined
with iterations of the Baum-Welch re-estimation algorithm.
Initially, single-gaussian monophone models were built.  Then
from those, gaussians were added to achieve 16-mixture
models.

3.3. Testing

A word in Mandarin is not clearly defined as it is in western
languages.  Words are not written with spaces in between them.
Word boundaries are ambiguous and often there are more than

one way to parse a sentence into words.  Every syllable in
Mandarin is also a word; thus a multi-syllablic word can be
broken up into multiple single-syllable words.  For example, a
word like “pian1jian4” can be broken up into 2 words, “pian1
jian4”, where the digit indicates tone.  If the recognizer
recognizes the word as the 2 words “pian1 jian4” instead of the
1 word “pian1jian4”, the acoustic scoring should still consider
it as correct.  Toward that end, word-level recognition was
performed but the results were scored on a syllable basis.

In order to nullify the effects of the language modeling and
concentrate on acoustic modeling, an all-word parallel
language network was constructed such that the language
model was limited to equal unigram probabilities for all words.

A small test set of 6 speakers and a total of about 2000
utterances was used.  The test sentences were hand-parsed into
words.  The word-level recognition task using syllable-level
scoring gave a baseline accuracy of 61.61%, as shown in Table
1.  This accuracy should not be taken as the best accuracy
achievable for the model topology and training method used.
Indeed, we increased the training data by a factor of 5 and saw
the absolute accuracy jump up to 70%.  No doubt, adding even
more training data and training triphone instead of monophone
models would cause a similar jump in accuracy.  The accuracy
is, however, important as a baseline against which to compare
the subsequent experiment which uses f0 features.

Experiment Accuracy Error
reduction

Baseline 61.61 % --
Baseline + f0 features 64.04 % 6.3 %

Table 1:  Results of baseline experiment and f0 experiment.
Adding f0 features reduces error rate by 6.3%.

4. TONAL MODELS WITH f0

Next, we turn to the effect of adding f0 parameters to the
feature vector.  As stated in Section 1, f0 is a direct acoustic
manifestation of tone.  Thus, adding f0 and its derivatives to
the feature vector should improve the accuracy on tonal tasks.
Strictly speaking, tone is a syllable-level phenomenon and
simply adding f0 features to the phonetic models is not an
accurate way of recognizing tone.  A syllable can have more
than one vowel in its nucleus, and the f0 track is different
depending on whether the vowel is at the beginning or the end
of the syllable.  However, as a simplification, this method does
reveal the usefulness of f0 and its derivatives.

4.1. f0 Tracking Algorithm

Talkin’s f0-tracking algorithm [4] was used to derive f0 values
for each frame.  This algorithm uses a two-pass strategy.  In the
first pass, it calculates, using rough time parameter values, the
short-time cross-correlation between a windowed segment of
the speech waveform and a time-shifted version of itself.  The
normalized peak of the cross-correlation is taken to be a likely
vicinity where a pitch pulse has occurred.  In the second pass, a



finer time window is used in the cross-correlation calculation
to more accurately define the time of the pitch pulse in the
vicinity of a peak found in the first pass.  Once the pitch pulse
candidates are identified, a dynamic programming stage across
syllabic time scales is used to smooth out discontinuities in the
f0 track caused by pitch doubling or halving.

The f0-tracking algorithm can be computed in real-time.  The
first and second passes can be computed in parallel.  The
dynamic programming stage in the post-processing can be
limited to 100 ms, which is short enough to seem real-time to a
user.

Where speech is unvoiced, f0 is undefined; we set it to zero to
give it a fixed value.  In order for the derivatives to not be
discontinuous at voiced/unvoiced boundaries, we forced the
first derivative to be zero for the first 2 frames into a voiced
region on the left and right boundaries.  Similarly, we forced
the second derivative to be zero for the first 2 frames into the
non-zero first derivative region.

4.2. Feature Vector Extension

f0, f0′, and f0′′ were appended to the 39-element MFCC feature
vector as 3 independent streams.  The resulting feature vector
thus comprised 4 independent streams: MFCCs + derivatives,
f0, f0′, and f0′′.  The streams weights were set to [1 1 1 1], i.e.
equal weighting for each stream.  This notation for stream
weights refers to the weights for MFCCs + derivatives, f0, f0′,
and f0′′, respectively.  The model topology forces each stream
to be statistically independent of the others.  Such an
assumption is approximately correct for the MFCCs vs. f0
insofar as the glottal source is independent of vocal track
shaping.

4.3. Training

Just as in the baseline experiment, 64 monophone models,
consisting of 40 tonal vowels and 24 consonants, were trained.
The models were again mixed up to 16 gaussians using the
same training set as in the baseline experiment.

The stream topology was incorporated into the training phase
of model building.  The contribution of each stream’s output
probability was multiplied together.  Gaussian mixtures within
each stream were added together.  The output probability
distribution is described by
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where

j = state index
t = time index
s = stream index
S = number of streams
m = gaussian mixture index
M = number of mixtures
b = output distribution

o = observation vector
c = stream weight
N(o: µ; Σ) = gaussian distribution with mean µ and
                    covariance Σ
γ = stream weight

4.4. Testing

For the recognition test, the test set used in the baseline
experiment was used here.  The same parallel word language
network was applied, and word-level recognition with syllable-
level scoring was again performed.  By adding the f0
information to the feature vector, we realized a 2.43% increase
in absolute accuracy, which represents a 6.3% relative error
reduction.  This improvement is a rather significant result,
indicating that the use of f0 is unquestionably beneficial.  A
similar experiment by Liu et al. [1] on the Mandarin Call Home
corpus also indicated that f0 features do help recognition,
although their reduction in relative error using f0 features was
only 1%.

5. STREAM WEIGHTS

We now explore the effect of stream weights.  In Section 4, the
stream weights used were [1 1 1 1], i.e. the
MFCCs+derivatives, f0, f0′, and f0′′ were weighted equally.
The question arises: how much do f0, f0′, and f0′′ each
contribute to the improvement in accuracy?  By varying stream
weights, we can explore the effect of each individual stream.
In this section, we explore the effect of f0 and f0′′ by setting
some of the weights to 0. According to Eq. (1), a stream weight
of 0 nullifies the effect of the stream.  The stream can then be
dropped from the feature vector, saving both CPU time and
memory.

5.1. Baseline: Single Gaussian Models

In order to shorten training time, we constructed single-
gaussian monophone models rather than the 16-gaussian
mixture models described in Sections 3 and 4.  Thus, a new
baseline experiment was conducted.  The training procedure is
the same as before, using the same amount of training data, but
this time we stopped at single gaussians and did not add
mixtures.  Again, word-level recognition and syllable-level
scoring were performed.  The resulting accuracy was 35.28%,
as shown in Table 2.

Experiment Accuracy Error
reduction

Baseline [1 1 1 1] 35.28% --
Nullify f0 [1 0 1 1] 37.53% 3.47%
Nullify f0 ′′ [1 0 1 0] 37.53% 3.47%

Table 2:  Results of stream weight experiments.  Stream
weights are shown in []’s.  The first row is the baseline.  The
second row  shows the effect of nullifying f0.  The third row
shows the effect of nullifying f0′′.



5.2. Effect of f0

The normal f0 range of individual adult speakers easily spans
the range 100-300 Hz.  Even in normal speech, f0 for women
can exceed 300 Hz, while for men it can fall below 100 Hz.
Unless f0 is normalized, it very likely adds little toward
accuracy improvement.  Without adaptation or a priori
information on the speaker’s f0 range, normalizing f0 is
impractical.  In the baseline experiment of Section 5.1, we did
not normalize f0.  f0, then, is not expected to significantly
affect  accuracy.  Thus, an experiment using stream weights [1
0 1 1] was conducted to explore this hypothesis.

Single gaussian monophone models were trained as before, but
this time with stream weights [1 0 1 1].  Recognition accuracy
for these weights turned out to be 37.53 %, representing 3.47%
error reduction, as shown in Table 2.  As expected, the
accuracy was improved by nullifying the f0 stream.

5.3. Effect of f0′′
In addition to exploring the effect of f0, one may question the
utility of f0′′.  Canonical tones in Mandarin are characterized
by piece-wise linear segments of f0 as a function of time.
Because they are piece-wise linear, the second derivative of f0
should be 0 except where there are discontinuities in f0.
Canonically, a discontinuity within a syllable can only occur
for tone 3, for which f0 as a function of time is V-shaped.
However, because we are building phonetic models without
regard to phone position in a syllable, values of f0′′ are not
likely to be consistent across phones.  Of course, syllable-
boundary effects also have discontinuities in f0, but again these
effects are not likely to show regularity at the phoneme level.
The stream weighting [1 0 1 0] is therefore of interest.

After models were trained and tested, we realized a recognition
accuracy of 37.53%, as shown in Table 2.  This signifies that
f0′′ with the presence of f0′ neither improves nor hurts the
accuracy.

6. CONCLUSION

The fundamental frequency was used to model tones in
Mandarin Chinese.  f0 and its derivatives were shown to
significantly improve the recognition accuracy.  With streams,
we were able to isolate the effects of f0, f0′, and f0′′.  We
showed that f0 is not a useful feature when it is not normalized.
This is because of the wide range of f0 in speakers.  We also
showed that f0′′ does not contribute much to recognition
accuracy when doing phoneme-level modeling.  The reason is
that canonical tones are piece-wise linear over a syllable, so
f0′′ is canonically 0 except at break points in f0.

In future work, more effective tone modeling should be
pursued.  Tones are syllable-level phenomena.  In this paper,
we modeled tones at the phonemic level because this technique
is simple to incorporate into the existing phoneme-based
acoustic models.  Eventually, a syllable-level model should be
pursued.  Such modeling can be achieved through syllable-
based acoustic models.  Since the number of tonal syllables in
Mandarin is limited to 1345 syllables, the amount of training

data to build syllable models is not prohibitive.  Further
efficiencies can be realized by splitting the syllable into its
initial and final components.

Syllable models also allow context-dependent tone models to
be built easily.  Thus we can imagine building tri-syllable
models, with left and right context dependency of not only
neighboring phonemic effects, but neighboring tone effects as
well.  Tones influence each other dramatically, as shown in a
study by Xu [5], so context-dependent tone models are
indispensible in Mandarin speech recognition.
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