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ABSTRACT For systems that have undergone calibration processes such as
speaker adaptation or acoustic adaptation, it is even more tedious

In this paper we describe a novel approach to address the issug@fepeat them, let alone the complication of maintaining multi-
different sampling frequencies in speech recognition. In generdije prototypes. Therefore, an efficient methodology that can
when a recognition task needs a different sampling frequengccomplish sampling frequency change without any burden of
from that of the reference system, it is customary to re-train thee-training becomes very desirable in many field applications.
system for the new sampling rate. To circumvent the tedious ] . .
training process, we propose a new approach termed Sampli this paper, a novel algorithm, Sampling I_:zate Tran_sformatlon
Rate Transformation (SRT) to perform the transformatiodSRT), is proposed as a model-based solution to the issue of fre-
directly on speech recognition system. By re-scaling the mel-flduency mlsmatch._ The SRT algorithm is to be evaluated z_it three
ter design and filtering the system in spectrum domain, SRT coflifferent frequencies: 16KHz, 11KHz, and 8KHz. In Section 2,
verts the existing system to the target spectral range. New2MPpling Rate Transformation will be thoroughly described, fol-
systems are obtained without using any data from the test enyfved by the deS(_:rlptlon of experiment systems and evaluation
ronment. Preliminary experiments show that SRT reduces ttfiatabase along with comparative results in Section 3. Then, con-
word error rate from 29.89% to 18.17% given 11KHz test dat&!Usion and summary will be presented.
and a 16KHz Sl system. The matched system for 11KHz has
orror rate of 16.17%. We also examine MLLR and MAp, Thed- SAMPLING RATE TRANSFORMATION

best result from MLLR is 17.92% with 4.5 hours of speech. In . . .
the speaker adaptation mode, SRT reduces the error rate frdfierpolation and decimation have been used to change the sam-
15.48% to 9.71% given 11KHz test data and a 16KHz SA systeﬁ‘ll'ng rate for data. However, the frequency conversion process is

while the matched 11KHz SA system has an error rate of 9'330/(;3.redominantly applied directly to waveform signals. In contrast,
sampling rate transformation (SRT) performs “downsampling”

1. INTRODUCTION or “upsampling” directly on a recognition system while leaving
the sampling frequency of test data unchanged. In other words,

Itis well-known that speech recognition can achieve the best pei?€ fundamental idea of sampling rate transformation is to con-
formance when test conditions match training conditions. In ger{e't a_cepstral-based system that is designed for one particular
eral, these conditions include acoustic environments ([e.qg.[1,2[j@MPling rate to one system that can be used for another sam-
speakers (e.qg. [3,4]), application corpora (e.g. [5]), etc. In thiBling frequency.

paper we investigate an issue of sampling frequency mismatcﬁ]heoretically the SRT algorithm can be applied to both down-

The frequency mismatch inevitably leads to severe performance ~ " . o ;
d L " . ampling and upsampling cases, like its counterpart techniques
egradation in speech recognition. In one of our experlmenlﬁ time-domain. However, due to the fact that downsamplin
described below, the word error rate of a 16KHz speaker-inde- ’ ’ pling

pendent (SI) system can increase from 14.74% to 29.89% wh frves much more practical and useful purposes than upsampling

the sampling frequency of the test data switches from 16KHz " spgec_h recognmo_n, we maln_ly focus on the case of down-
11KHz. sampling in the following discussions.

Practically, when a speech recognition system is deployed, it 8- 1. Frequency Transformation On Cepstral-
designed for a specific data sampling frequency. When anothBased Signal Data

sampling rate is considered, it is customary to re-train the system

for the new specific sampling rate. While it is straightforward to_et { X[t], t = 1, T}be a sequence of vectors of mel-fre-

transform signals and re-train systems, this presents two majaﬁency cepstral coefficient (MFCC) [6] for an utterance of
problems in many real-time applications. First, extra efforts arg. . thT with a samoling fre uencyf The loa-spectral ren-
needed to supply training data at the new sampling frequency by 9 pling freq ref - g-sp P
either collecting new data or transforming existing training dataresentation of the signal can be written as
Second, the training process must be repeated to generate new

system parameters. X[t] = IDCT{X[t]}, t=1T (1)



wherelDCT is the inverse discrete cosine transform (IDCT). Inand its first-order and second-order derivatives as the features. In
rg'%gjdition, many systems seek to reduce speaker and environment
Variability by utilizing cepstral mean normalization (CMN) plus
energy normalization. Therefore, in the following section, we
&erive the sampling rate transformation on a system that also
employs dynamic cepstral features from time derivatives and
new ’ TMN along with energy normalization of automatic gain control

the new Nyquist frequencyf, /2 . as with respect to maximum value (AGC-max).

this case, each component ¥ t] is actually the band ene
from each individual mel-filter.

The downsampled version of the same signal for the new fr
quency, f can be obtained by discarding all filters abov

Let{{,[i], i = 1, M}and{Z,[i], i = 1, M} represent

o the mean vectors and co-variance matrices of a skt Gfauss-
whereW is a rectangular-window filter with a cutoff frequency atian distributions in a recognition system with a sampling fre-

fnevv/z' guency, fref .

Y[t] = We X[f], t=1T 2)

Note that Equation (2) is equivalent to filtering the signal in B B B B T

spectral domain with a rectangular window and masking it witd-et X[t] = [X_[t], X4[t], X 34[t]] = be the extended vector
an energy floor in the log-spectral domain for filters beyond the,malized with CMN and AGC-max. Furthermore, let AGC-
cutoff frequency. max be written a) = g [, + b(max )6)) . The static part
Finally, the MFCC vectors for the downsampled version of sigbf the extended observatiot[t] can be expressed as
nal with a new frequencyf new ' can be computed by discrete

cosine transform (DCT) as - — 1 - C
Gen X[t = G+ -7 0Y XU +Bed )

y[t] = DCT{Y[{}, t=1T 3)
Furthermore, based on Equation (1), (2), (3), we can re-write the go0.. f (max )b)’ mear( )6))
overall transformation as whereG =/01...0 bref = . ,
y[t] = DCT{ V[ 1} 00.. 1 0
= DCT{W- IDCT ¥ 1}}
e R . Pe = @ From Equation (4) and (5), the corresponding normalized vector
= AW+ Ce X1 . .
~ for new sampling rate can now be re-written as
= Se j{ﬂ

whereA andC are matrices for DCT and IDCT, respectively. In Y [t] = G+S- (G- Xt— bref) + G* bhew (6)
other words, the frequency transformation can be characterized

by matrix operation as shown in Equation (4). Note thatBref andSneW are sentence-based shift vectors from

It is noted that the downsampled cepstral vector@&AGC-max for the original and new sampling rates, respectively.

{y[t], t = 1, T}share the same filters as the original CepStraﬂSimiIarIy, the corresponding dynamic features for new frequency

_ N . can be written as
vectors, X[t], t = 1, T }. What this implies is that the design

of mel-filters will remain the same regardless of the target sam-

pling rate. To this end, a reference sampling frequency, usually Y'd[t] =G5S G1. X'd[t]
the one of training data, is used to design the cutoff frequencies B o =1 (1)
for all mel-filters. When test data sampled at another sampling ydd[t] =GeSe G de[t]

frequency is to be processed, data points from FFT can get

aligned to their corresponding filter designed based on the refer- . o .
ence frequency with a linear warping. For further simplicity, let sentence-based shiflg o¢ and

2.2. Frequency Transformation On Cepstral- ~ Pnew: be replacedby globalshiftfyer  alhe,, . The static

Based Gaussian Models and dynamic features in the mean vectors for new frequency can
be expressed as

Equation (4) describes frequency transformation for individual
static cepstral vectors and also serves as a fundamental block for
frequency transformation. However, when it comes to the speech
recognition models, more issues need to be addressed. Many
state-of-the-art recognition systems utilize static cepstral vector
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c c System Signal Processing WER (%)
wo[i] = G5 é_l '] for Test Data
Hy th = Hx (®) 16KHz - S 16KHz 14.74
o, [i] = GeSe é—l ey il 11KHz - SI 11KHz 16.17
Yad Xdd 16KHz - SI 11KHz 29.89
It can be easily shown that the co-variance matrix for new fre- SRT - SI 11KHz 18.17
quency can be described as (Mean Only)
SRT - Sl 11KHz 19.01
(Mean & Var)

_ o _ _ . T
=il = G+ S- Gle3[il+(G+SG1) (9 - :
Table 1: Frequency mismatch and SRT in S| systems

3. EXPERIMENTAL RESULTS 3.3. Adaptation Using MLLR and MAP

Experiment Setup. A state-of-the-art IBM large-vocabulary We would like to apply other model-based approaches such as
continuous speech recognition [7] is used in following experiMLLR [4] and MAP [3,8] for the issue of frequency mismatch.
ments. Both training and test data are originally collected aAn adaptation data corpus with 1800 utterances (4.5 hours) from
22KHz. Experiments are carried out for 3 different processing4 speakers is processed at 11KHz. For the best performance, we
frequencies, including 16KHz, 11KHz, and 8KHz. The test datalso assume the 16KHz-processed data is available so that the
consists of 4 male and 6 female speakers. Each speaker recomsch better alignment can be computed from the 16KHz refer-
61 utterances from a specific business office task. Each spealasce system.

also records 270 utterances for experiments of speaker adapta-

tion. Table 2 lists the comparison of MLLR, MAP and MLLP+MAP.
With the use of 4.5 hours adaptation data, MLLR generates the
3.1. Baseline S| Systems best result, 17.92%, which is comparable to SRT. The observa-

tion that the use of MAP does not offer extra improvement indi-
Two speaker-independent (SI) baseline systems are establishedtes the mismatched 16KHz system is not a good initial model
one for 16KHz sampling frequency and one for 11KHz. Test dat®ith such relatively small amount of training data.
is also processed at the corresponding frequency. The word errc

rates (WER) for 16KHz and 11KHz baseline systems are System S;g?%i?g:f:mg WER (%)
14.74% and 16.17%, respectively, as illustrated in the first two
results in Table 1. 16KHz - SI 16KHz 14.74

. . o 11KHz - SI 11KHz 16.17
The bas_ellne results reve_al extra benefit from using wider-banc 16KHz - oI 11KAz 29.89
information as observed in the 16KHz system. The 16KHz sys-
tem is, thereafter, used as the reference system while the 16K+ SRT - SI 11KHz 18.17

(Mean Only)

frequency is referred to as the reference frequency in this pape
It is noted that the 16KHz and 11KHz systems share the sam MSRTS-L \S/| 11KHz 19.01
mel filters design based on 16KHz. SR WED)

MLLR - SI 11KHz 17.92
3.2. SRT MAP - SI 11KHz 19.06
MLLR+MAP -SI 11KHz 18.59

When the test data are processed at another frequency for oth
applications, a frequency mismatch occurs. While we maintair Table 2: Comparison of MLLR, MAP, SRT in Sl system
the same mel-band design used in the 16KHz system for th

11KHz data, the lack of high frequency component can still .
cause severe performance degradation. 3.4. Speaker Adaptatlon And Narrow Band

Table 1 shows that this mismatch in frequency leads to a WERo study the performance of SRT in conjunction with speaker
of 29.89%, twice the WER in reference system. When the SR&daptation, we establish a speaker-adapted (SA) system using
algorithm is applied to downsample the reference recognitioMLLR+MAP with 270 adaptation utterances for each speaker.
system for 11KHz data, performance improves to 18.17% witlror each sampling rate, we compute a SA system. Table 3 com-
SRT transforming only the mean vectors of Gaussian distribysares the performance of SRT in conjunction with speaker adap-
tion. Itis interesting to note that SRT does not get extra improveation. It shows that SRT is also very effective in the speaker
ment by transforming both mean vectors and co-variancadaptation mode by reducing the WER from 15.48% to 9.71%,
matrices. This is simply due to the fact that our reference systenomparable to those from the matched systems. It is also inter-
uses diagonal co-variance matrices. esting to note that the difference between 16KHz and 11KHz
system is virtually flattened after speaker adaptation.



System Signal Processingg WER (%)
for Test Data
16KHz - SA 16KHz 9.28
11KHz - SA 11KHz 9.33
16KHz - SA 11KHz 15.48
SRT - SA 11KHz 9.71

Table 3: Comparison of SRT in SA systems

get frequency, Though we derive SRT from a system using
dynamic cepstral features with CMN and AGC-max, this trans-
formation can be easily extended to other cepstral-based sys-
tems.

In our study, SRT achieves a WER of 18.17% for 11KHz Sl sys-
tem and 9.7% for 11KHz SA system, comparable to 16.17% for
11KHz Sl system and 9.33% for 11KHz SA system. In compari-
son, MLLR achieves a WER of 17.92% with the use of 4.5 hours
of adaptation data. In narrow band applications, SRT can reduce

We also would like to examine SRT in narrow-band applicationthe WER to 10.60% from 28.93% given a 16KHz SA system to
where the sampling frequency is set to 8KHz. Table 4 shows thae used with 8KHz test data. A benchmark 8KHz system
the frequency mismatch between 8KHz and 16KHz degrades tlaehieves 10.83% for the same data.

performance to 28.93%, much worse than its 11KHz-16KHz
counterpart which is 15.48%. SRT is shown to be able to remove
the adverse impact from frequency mismatch with an impressive
performance of 10.60%.

System Signal Processing WER (%)
for Test Data
16KHz - SA 16KHz 9.28
8KHz - SA* 8KHz 10.83
16KHz - SA 8KHz 28.93
SRT - SA 8KHz 10.60

Table 4: Performance of SRT in 8KHz with SA.
*Note: the 8KHz-SA system was obtained using slightly dif-
ferent mel-filters but it is a useful benchmark.

3.5. Gender-Dependence And SRT

It is interesting to examine the correlation between frequency

mismatch and speaker’s gender. Table 5 shows the breakdown
results based on speaker’s gender in SA systems. Not surpris-
ingly, it reveals that female speakers are likely to be more sus-

ceptible to the frequency mismatch than male speakers. We also
observe similar comparisons in the Sl systems.

System Test Total Male Female
Data WER WER WER
16KHz 16KHz 9.28 8.48 9.82
11KHz 11KHz 9.33 8.35 9.98
16KHz 11KHz 15.48 9.92 19.19
SRT 11KHz 9.71 8.36 10.67
8KHz* 8KHz 10.83 9.02 12.04
16KHz 8KHz 28.93 22.59 33.15
SRT 8KHz 10.60 9.29 11.47

Table 5: Breakdown results of SRT based on speakeris ge
der in SA system, with 4 male and 6 female speakers

4. SUMMARY

In this paper, we study the issue of different sampling frequen-

cies in speech recognition. Severe performance degradation is
observed when a sampling frequency mismatch occurs. We pro-
pose a novel approach, SRT, to reduce adverse impact of mis-
match. A significant advantage of SRT is that new systems are
obtained without using any calibration data processed at the tar-
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