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ABSTRACT language-model parameters, such as the language Wefgjin,
the higher this fraction, the more likely it is correct.

In this paper we describe two new confidence measures for esti-
mating the reliability of spech-to-text outputtikelihood Depen- In this paper, we introduce two new features for confidence anno-
denceandNeighborhood DependencEach word in the speech- tation. The firstid.ikelihood DependendeD). The LD value for
to-text output for a given utterance is annotated with these twa given word instance indicates how much the overall hypothesis
measures. Likelihood dependence for a given word occurrenékelihood depends on that instance. It is obtained by comparing
indicates how critical that word is to the overall utterance likethe original utterance likelihood to that of the next best redagn
lihood; i.e., how much worse is the likelihood of the next beshypothesis that is constrained to exclude that word instance.
utterance if that word is eliminated from the recognition. Neigh-
borhood dependence measures how stable a given word is whERe second feature Beighborhood Dependenck defines how
neighboring words are changed in the redtign. We show that stable a given word instance is, even when other words in the
correctand incorrect words in the recognition behave significantfgcognition are forced to be different. Briefly, feach word
differently with respect to these measures. We also show that ##stance in the main recognitidrypothesis, another hypothesisis

the broadcast news task ’[hey perform better than some of tﬁ@tained that is forced to exclude that word instance. This may
existing, commonly used confidence measures. cause other nearby words to be changed as well. The stability

of a word instance, in spite of neighboring ones being excluded,
indicates its correctness.

1. Introduction Confidence measures can also be applied jointly. Chase [1]
used a decision tree procedure to combine an arbitrary number
f them. We have used a straightforward generalization of the

e-dimensional case to combine the two proposed features.

Detecting regions of high and low reliability @bn fidence in
the output of an automatic speech recognizeris an important ta
Many practical applications of speech recitigm systems can
benefit from such information. For example, if a certain recogniye first describe the two features in greater detail in Section 2.
tion resultis deemedto be unreliable, the application may promgie then describe their use in actual confidence annotation of a
the user for clarification. Thus, the availability of confidence inforyoadcast news test set in Sections 3 and 4. These include mea-
mation can add to the sophistication of speech-based applicatioBgrements of how accurately the features can be used to identify
) . L . correct and incorrect recognitions, as well comparisons with the
Confidence annotation can be done in principle at various level her measures NBH and LMJ. Section 5 concludes this paper
e.g., sentence, phrase, word, or phone level. In this paper, as WI'[P‘I ' '
most current implementations, we are concerned with confidence

annotation at the word level. That is, each word output by the 2. The Proposed Features

speech recognizer is annotated with a confidence value. 2.1. Likelihood Dependence (LD)

A perfect confidenc_:e annotator would assign ardigof 100%  £or each word instance in the rectipn hypothesis, we wish to

to correctly recqgnlze(_j words, and 0% to incorrect ones. Ir} Pragstimate its contribution to the total hypothesis likelihood. We
tice, no such thing exists, of course. Instead, typical confidenggu his information as follows: For a given word instance in the
annotators assign any value between 0 and 100%. THeymf@  giginal recognition, we obtain the next best recognition in which

confidence annotator can be evaluated by seeing how close it pg{at instance does not appear, and compare the likelihoods of the
forms to the perfect annotator. (Chase’s Ph.D. thesis [1] addressgg,

this question in depth.) Another desirable property of a confi-
dence estimator is that it should be computationally inexpensiveet P be the log-likelihood of the original hypothesis consisting
for example, it should allow real-time recagon performance.  of n word instances,wz,ws,... v . (The same actual word may

) . appear as more than one instance, of course.) Let us denote the
Several confidence measures have been proposed in the pgsk segmentation of thieth word instancev; to be 6, e;); i.e.
[1, 2, 4, 7]. Two of the more successful ones atebest List  giart times, and end time:;, obtained as part of the recognition
HomogeneitNBH) and Language Modelider (LMJ) [1, 3].  hrocess. For eachs, we prevent it from occurring anywhere
NBH is the fraction of an N-Best list containing a given word ;... the time segments(, ¢;), and obtain a new recognition.
within a given time segment. The closer this fraction to 1, the
more reliat_)le is the word. LMJ is the fraction of times a giVen 1an exponent applied to the language model pralgin obtaining
word remains present in the recognitioypothesis under varying the overall likelihood for a recogtion hypothesis.




Let P; be the log-likelihood of this hypothesis. The log-likelihoodshows the distribution of raw likelihood difference values for the
differenceP — P; is a measure of the relevanceafto the original  two classes of correct and incorrect word instances. There is a
recognitiorhypothesis. The larger this difference, the more likelyclear distinction in the behavior of the two classes.

thatw; is a correctly recognizedword. (We will henceforth simply

say “likelihood” to mean “log-likelihood”.) 0.16 ‘ ‘ ‘ ‘
1 LD Distr.(correct) ——

A number of questions arise. First, how do we obtain a recogni- g | i LD Distr.(incorrect) -
tion hypothesis that does not contain a given word instance. (Let O o012 1
us refer to such hypotheses@mstrained hypothesgsSecond, E

in obtaining 7, it is not sufficient to prohibitw; from occur- R L ]
ring exactly within (s;, e;), since time segmentations are never é 0.08 - i
known perfectly. Finally, raw likelihood difference values cannot = ¢

=]

c
must derive a usable confidence measure, or probability of cor- % 0.04 |
rectness, from the raw likelihood differences. We discuss these £

issues below. 002 r ! 1
¥ s
. . i . 0 loseassc R s
Generating Constrained Hypotheses.We first provide some 2 o 2 4 6 8 10
background on the CMU Sphinx-3 recognizer [6] that was used for Likelihood Difference (x100000)

this research. We use two passesto get the initialgeition. The

first pass is a conventional beam search using the Viterbi algorithinigure 1: Distribution of raw likelihood difference values for

It produces a word lattice that includes word segmentations ar@@rrect and incorrect word classes.

acoustic likelihoods. The second pass is an A* search through

a word graph constructed from the word lattice. The top of the

N-best list from this search is the final recognitioypothesis. Figure 2 shows the probability that a word instance is correct (i.e.,
its LD confidence score), given its likelihood difference. We see a

To generate a constrained hypothesis, we repeat the second (&f¢ar correlation between the two, especially in the region where

pass over a suitably modified word lattice. Specifically, for a giveinost of the data is concentrated. Note that in regions of sparse

word instancew; with time segmentations(, ¢;) in the original

hypothesis, we create a modified wortlitze from the original that 1

excludesw; as well as other nearby segmentations of the word.

The “slop” at segment boundaries are determined empirically. In

T ™

B Conffdence Measure ——

our case, if the same word occurs within 1 frame (10msee) of 08 |
or within 4 frames ot;, we eliminate it from the word lattice. We _
use a larger slop for the end time since the word latticelpced 8 06t E
by the Viterbi search has greater uncertainty in its word end times. 3

=1
Occasionally, removing a word; splits the lattice into two un- £ 041 |

connected parts. In this case, no recognition result is available.
We call themeritical word instances. The raw likelihood dif- 02t g
ference for them is essentially infinity, and they are very likely
to be correct recognitions. Second, since our A* search contains

. . . . . . O L 1 L L
pruning and is not an optimal search, the likelihood difference 2 0 2 4 6 8 10
P — P; may be negative. In this case, the word instance is likely Likelihood Difference (x100000)
to be incorrect.

Figure 2: Probability of a word instance being correct, based on
Deriving the LD Confidence Measure. As mentioned earlier, its likelihood difference.
given aword instance; and its raw likelihood differenc® — P;,
we ultimately need to derive a probability that is correct. Such  training data, the curve is quite uneven, as shown by the occasional
a mapping function is obtained through a straightforward trainingpikes. The unevenness should be smoothed using neighboring
process, described below. bins to provide a more reliable curve.

The training data is a set of utterances for which words in thWe should also note that the two figures excludécad words

recognitionhypotheses have been labeled according to their agnat split a lattice when removed. There weteoat 1000 such

tual class: correct or incorrect. For each utterance hypothesis\iibrds in the training set, of which 98.8% were correct.

the training set, likelihood difference values are computed for its

constituent word instances, as described above. The entire ral ;

of these values is divided into discrete bins and the fraction (r)?_ez_ NelghborhOOd Dependence (ND)

correct words in each bin determined. This is the desired LINeighborhood dependence represents the number of neighbors

confidence measure. that can affect aword instance in the recognitigpothesis. Once
again, let the original utterance consistvord instancesvs, wo,

We ran this training process on data ConSiSting of about 140Q93,...,wn. As with LD, we generate constrained recognitions

word instances from the broadcast news (BN) recognition tasircing one of the word instances to be excluded at a time. Con-

[6]. (The word error rate on this test set was about 27%.) Figuredider two word instances; andw, in the original recognition



hypothesis. When a constrained recitign is produced by ex- There is also a similar unevenness in regions of sparse training
cluding w;, instancew; may or may not be presentin it. (To data that needs to be overcome using smoothing.
determine its presence we look fef around its original segmen-
tation, using boundary tolerances as described earlier.) We coupt3, Joint Measures
the number of timesv; is absent in the: constrained recogni-
tions. This is the ravNeighborhood Dependence Courithe It is straightforward to combine the two measures (or any two,
larger this count, the more likely that; is an incorrect word. (It for that matter) to obtain a joint one. We create a 2-dimensional
is important to count the number of times; is absent, rather ~ array of bins, covering the space of the two measures, and count
thanpresent. The reason is that whenever the excluded wordhe fraction of words correct in each bin. However, one has to be
w; is far removed from the subjeat;, the latter usually remains much more aware of the possible sparseness of the training data.
unchanged, whether it is correct or not.) The number and granularity of bins must be chosenaccordingly. It
is also much more critical to smooth the distributions so obtained,
The details of obtaining constrained recognitions are identical t avoid over-fitting to the training data.
the case of the LD measure (Section 2.1). Conversion of the
raw neighborhood dependence count to an ND confidence scqpe4 Algorithmic Complexity
is similar: Given all the word instances in the training set with
a specific raw count, we compute the fraction of them that aréhe process described above for obtaining the confidence mea-
correct. sures appears to be computationally expensive. For an utterance
with n» word instances; new (constrained) recognitions have to

‘ be obtained. In practice, this overhead need not be inordinately

NB‘%E}&E;EES{I%‘% - high. The solution we propose for our real-time experiments is
1 to use theglobal best path searcfb] pass of the Sphinx-3 or

Sphinx-1l decoders. This algorithm finds the globally optimum
1 path through a word tice such as the one described in Section
2.1. Itis an efficient algorithm that usually runs about 10-20 times
1 faster than real time on large vocabulary tasks on modern comput-
ers. Therefore, for short utterances wheis about 10 words, the
1 additional computation is likely to be within a real time. For the
longer sentencesin the BN task, we have seen that the computation
1 required was about 2 times real time.

0.6

Fraction of Words Within Class

15 20 3. Experiments

5 10
Neighborhood Dependence Count We have just shown that the LD and ND statistics are significantly

. o ) different for the classes of correct and incorrect words. We also
Figure 3: Distribution of neighborhood dependence counts fQkyajyated the two features by using them for tagging the recogni-
correct and incorrect word classes. tion on a separate test set as correct or incorrect. In addition, we

compared their performance to similar tests using the N-best List

Figure 3 shows the distribution of the neighborhood dependenggmogeneity (NBH) and Language Modéter (LMJ) features
counts for the classes of correct and incorrect word instancesj. we briefly outline the latter two below.

As with the LD measure, there is a noticeable though smaller
difference between the behavior of the two classes. Like LD and ND, NBH is computed for each word instance

in the original recognitiomypothesis. Basically, one searches for
‘ND ‘Conﬁ(‘jence‘Me@re T instancc_as ofv; near its original segm_entation in the N-b_est_ list.
0.8 - . The ratio of matches found to the size of the N-best list is the
NBH measure. (The original implementation computed the ratio

0.9

07t 1 Lo . oo

by weighting each N-best entry by its total likelihood. We have
g 06 1 1 not done so in our experiments.)
£ 05 | 1 . . . .
8 LMJ is computed as the fraction of times a word instance re-
E 04 ¢ | mains present in the recognitidrypothesis under varying lan-

03t : guage weight and word insertion penalties. (In our experience,
word insertion penalty has played a minor part; we have not var-

02t 1 . . )
ied this parameter.) We trained NBH and LMJ on the same data
01rf p as LD and ND.
0 A W
0 2 4 6 8 10 12 14 16 18 20 The experiments performed involved using the confidence mea-

Neighborhood Dependence Count sures to tag recognition on a test set as correct or incorrect. The

) B ) ) test set included about 6000 words from the Broadcast News do-
_Flgur(_a 4: Probability of a word instance being correct, based ogin. Briefly, each word in the recoiion was anotated with a
its neighborhood dependence count. confidence score; i.e., probability of being correct as determined
by the training set statistics. (Actually, each word had four dif-
Figure 4 shows the probability of correctness derived from the NEerent annotations for the four measures.) A word was tagged as
count. As with LD, there is a marked correlation between the twdieing correct if its confidence score exceeded a chosen threshold.



The performance of each measure was evaluated by repeating the
tagging at several different thresholds.

Based on the tagging, we computed the following two figures for
the four confidence measures:

1. Contamination Ratethe ratio of the number of incorrect
words tagged as correct to the total number of words tagged
as correct.

. False Alarm Ratethe ratio of the number of correct words
tagged as incorrect to the total number of words tagged as
incorrect.

False Alarm Rate

An ideal tagger would have a contamination rate and false alarm
rate of zero. The confidence measures can be evaluated by how
close they get to the ideal tagger.

lo L L L L L L L L L
0O 10 20 30 40 50 60 70 80 90 100
Fraction of Total Words Tagged As Incorrect

Figure 6: False alarm rates the fraction of words tagged as

incorrect, for each confidence measure.

4. Results

Figures 5 and 6 show the contamination and false alarm rates fgfeasure achieves the better performance of LD at the higher end
the four confidence measures, at different levels of tagging. Asthg the graphs, and that of ND at the lower end.

threshold is varied, the fraction of words tagged as correct changes.
From Figure 5 we can see that as the fraction of words tagged as

30

5. Conclusion

We have introducedlikelihood Dependencand Neighborhood
Dependencas two new features for use in confidence annotation.
We have seen that together the two outperform other established
measures over a wide range of operation. LD, in particular, seems
to be significantly better than any of the others individually. We
are also evaluating the application of these features in other areas,

25
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Contamination Rate

0O 10 20 30 40 50 60 70 80 90 100
Fraction of Total Words Tagged As Incorrect

including confidence annotation for a medium-vocabulary, real-

system interactive system, and in improving the word error

rate of speech recodion based on the additional confidence in-
formation.
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incorrect, for each confidence measure.

incorrect becomes greater, LD performs the best. That is, the
remaining words that are tagged as correct are less contaminated.
with actually incorrect words.

From Figure 6 we see that as the threshold is set to tag incorrecty
words more aggressively, LD agains performs best; it has the
lowest false alarm rate. At somewhat lower rates of tagging, ND
seems to be the best. Overall, LD or ND dominates over a wide "
range of the graph.

A second problem with both NBH and LMJ is that they can be 4-
evaluated for only a portion of the entire graph. The reason is that

a large fraction of the data, whether correct or incorrect, falls in 5.
exactly one point. This is especially true of LMJ; for over 60%

of the words, the LMJ score is 1; their recognition is unaffected
as the language weight is changed. Thus, discrimination betweeng.
correct and incorrect words is impossible for that fraction of data.
This problem is less severe for ND, and not at all for LD.

We have also used LD and ND jointly, as described in Section 2.3. £
The main benefit we have observed in this case is that the joint
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