FAST DECODING FOR STATISTICAL MACHINE
TRANSLATION

Ye-Yi Wang

Alex Waibel

Language Technologies Institute
School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213, USA

ABSTRACT

We investigated an efficient decoding algorithm for sta-
tistical machine translation. Compared to the other algo-
rithms, this new algorithm is applicable to different trans-
lation models, and it is much faster. Experiments showed
that the algorithm achieved an overall performance com-
parable to the state of the art decoding algorithms.

1. INTRODUCTION

A statistical machine translation system consists of three
sub-tasks: the modeling task describes machine transla-
tion processes with stochastic models; the learning task
estimates the parameters in the models; and the decoding
task searches for the translation that has the highest score
according to the models. [1, 2, 3] described different trans-
lation models and their learning algorithms. [4, 2, 5, 6]
introduced different decoding algorithms. However, those
decoding algorithms have many limitations. Below is a
brief review of these algorithms:

1.1. IBM Stack Decoder

In the IBM Stack Decoder [4], a hypothesis is comprised
of a source sentence prefix string and an alignment between
the prefix string and the target (input) sentence. Each hy-
pothesis is associated with a model score. For a given
target sentence, each subset of the words in that target
sentence is associated with a priority queue. A hypothe-
sis 1s put into one of the priority queues according to the
target words that have been accounted for by that hypoth-
esis. Because there are 27 (n is the target sentence length)
subsets of target words that can be accounted for by a hy-
pothesis, the number of priority queues is exponential in
the target sentence length. A long target sentence will
lead to huge number of priority queues; hence too much
memory space will be allocated. When an input target sen-
tence is longer than 15 words, the decoder can allocated
more than 1 GB memory. Exponential number of priority
queues also implies that exponential number of hypothe-
ses have been generated by the decoder. Therefore the
decoder is extremely slow. In our experiments with IBM
decoder for Model 3 [1], we let the decoder stop searching
and register a failure whenever it allocated more than 750
MB memory. Table 1 shows the number of sentences that
IBM decoder had failed, as well as the number of states
being extended.

Sentence | Total | Failed Pct Extended
Length Hypo #
1-4 81 0 0% 16
5-8 128 0 0% 2,705
9-12 101 0 0% 11,660
13-16 41 19 46.3% 63,472
17-20 16 9 56.3% 145,768

All (1-20) | 367 28 7.6% —

Table 1: Performance for the IBM Model 3 Stack De-
coder: Input target sentences are grouped according to
their lengths. The second column lists the total number of
sentences in each group. The third column lists the num-
ber of sentences that the decoder failed on. The fourth
column lists the failure percentage. The fifth column lists
the average numbers of hypotheses being extended by the
decoder, which were collected with those successfully de-
coded sentences.

1.2. Dynamic Programming Decoding

Algorithms

[2] and [6] described dynamic programming decoding al-
gorithms for statistical machine translation. While dy-
namic programming algorithms worked fast, they imposed
a strong constraint on the translation model: no crossover
was allowed in word-to-word alignments between paral-
lel sentences. This constraint basically requires that the
source and target languages have very similar word orders.
In case when the word orders are different (like English
and German), a preprocessor is required to make the two
languages similar.

1.3. A* Decoding Algorithm

[5] described an A* decoding algorithm. While this algo-
rithm was much faster than the IBM decoder, it was only
applicable to IBM Model 1 and Model 2, since its scoring
mechanism relied on the reinterpretation of a probabilistic
equation specific to the models. It is not clear how this
algorithm can be used for more complicated models.

In summary, the current decoding algorithms are either
too inefficient or too restrictive. And all of them are not
generally applicable. For example, they will not work with
the more complicated structure-based model [3].

2. FAST STACK DECODER FOR
MODEL 1 AND MODEL 2

The high failure rate and the slow speed of the IBM
stack decoder were due to the same reason — retaining the
alignment between a source sentence prefix and the target
sentence in a hypothesis. Because the number of possible
alignments is exponential in sentence length, this results
in exponential number of priority queues and hypotheses.
Therefore the algorithm is too expensive with respect to
both time and space complexities.

On the other side, efficient algorithms are available for
Model 1 and Model 2 to calculate P(g|e) =), P
A, e)', the a posteriori probability of a target sentence g
given a source e, over all possible alignments A. Therefore
we do not have to make assumption about the alignment
between a source sentence prefix and the target sentence.
Instead, a hypothesis can be just a prefix string of the
source sentence, whose score is the likelihood of the target
sentence summed over all possible alignments. In doing so,
we greatly reduced the size of hypothesis space and make
the decoding algorithm more efficient.

To be specific, here we present a modified fast decod-
ing algorithm for Simplified Model 2 [5]. The decoder for
Model 1 can be simply derived from it.

An important issue here is how we score a hypothesis.
In Simplified Model 2, the equation for the a posteriori
likelihood of a target sentence g given a source sentence e
can be used to assess a hypothesis:

62 Z Ht(g] | €a;)ai(a; | 7)

a1=0 App,=03=1

TSt | et 15 (0

J=1¢=0

Plgle =

here [= |e| and m = |g|.

Although (1) was obtained from the alignment model,
it would be easier for us to describe the scoring method if
we interpret the last expression in the equation as follows:
each word e; in the hypothesis contributes the amount
et(g; | ei)xai(i] j) to the probability of the target sentence
word g;.

Given the target sentence G = g1 g2 - - - gm, assume that
the source sentence length is ! at this moment. The hy-
pothesis H; =1 :e1,e2,- -, ex has hypothesized k words as
the prefix of the source sentence of length I. Then the prob-
ability mass contributed by the source word e; (0 < i < k)
to the target word g; is et(g; | €i) x ai(:| 7). For a source
position k < ¢ < [, since the source word at that posi-
tion has not be introduced into the prefix, its contribution
to the target word g] is averaged over all possible source

ZlLl Pr(wx)xt(g; | wx). Here

|L| is the size of the source language lexicon, wy is the k"

words, which is eal 7|]

le and g are used here because English and German are the

source and target languages in our system.

word in the source lexicon, and Pr(wz) is the prior proba-
bility of the source word wg, which can be obtained with
the maximum likelihood estimator. Therefore, if we use
7r1(7 | ¢, Hy) to denote the contribution of the it" source
position of H; to the probability mass of the ;% target
word, we have

(g | 4 Hi) = (2)
6Cll('|’)(gj|€) 0<i<k
ear(Zko V(g |wr) k<i<lI

The translation model score of H; is therefore

HZTM]MHZ (3)

J=1 =0

In practice, since we do not make any assumption of
the source sentence length, the score of a hypothesis H =
€1,€2, -, ex has to be averaged over all possible sentence
lengths:

(H)= Zm:Pr(k | m) x 7(H;) (4

here Pr(k | m) is the source sentence length distribution
conditioned on the target sentence length, which was mod-
eled with Poisson distributions. L., 1s the maximum sen-
tence length allowed.

Because our objective is to maximize P(e,g), we have
to include the ngram language model probability of the
prefix string. Therefore the score of H is

S(H) = 7(H) x H P(ceic1). (5)

ei| eimng1 -

Because of the different number of factors in the lan-
guage model score, hypotheses of different prefix lengths
are not comparable. Therefore hypotheses are stored in
different priority queues according to their prefix lengths.
This results in the following algorithm:

Algorithm 1 Fast Stack Decoder for Simplified Model 2

Input: target sentence 1" = tits - - ty,.
QOQutput: source sentence S = 5182+ Sm.
Data Structures:
a set of priority queues QoQ;- - -
for hypotheses.

Q..

1. Initialize with a null hypothesis (with prefix string
length 0) Ho, compute S(Ho) with (2), (3), (4) and
(5).

2. Qo+ Ho

3. For each Q € {QoQ:---Q;, }and H €Q

4. set the threshold for Q

5 if S(H) > Threshold(Q)

6. for each promising source word s
7. H'= append(H, s)
8. score H' with (2), (3), (4) and (5).
'
10. exit the loop if N complete source sentences are

available in Q%s.

11. Report the hypothesis with the highest score in Q's
as the translation of T

3. HYPOTHESIS RESHUFFLING

The aforementioned algorithm is only applicable to
Model 1 and Model 2. There is no efficient way to com-
pute the likelihood of a target given a source over all pos-
sible alignments for more complicated models. To apply
the algorithm to those models, we present a hypothesis
reshuffling algorithm here. The idea of hypothesis reshuf-
fling was based on the observation that the fast stack de-
coder often found, in the top N translation candidates,
the correct translations, or almost correct translations —
translations that had the correct bags of words arranged
in wrong orders.

The hypothesis reshuffling algorithm uses the decoder
for a simple model (e.g., the fast stack decoder for Simpli-
fied Model 2) to find top N hypotheses. It then searches
for the translation that is the best according to a more
complicated model, in the neighborhood of those candi-
date hypotheses. We define the following terminology to
describe the algorithm:

Definition 1 Word move

Two hypotheses H = ejeses...e, and H' = efebeh...e!
1€2€3...€p

differ by a word move if there exist 1 < < 5 < n such
that either of the following holds:

@
~—

>
—
2
+
—

)
“

I

(e1...6601 = efeig) A (e =
eh€j_1)A(€jq1...6n = €}41...€,) OT

(e1...€i_y = er...eic1) A (el
1)

€i...€5_1) A (6]+1"'6:7, = €j41..-€n)
Definition 2 Word swap

Two hypotheses H = ejeses...e, and H' = elebeb...el
differ by a word swap if ex = e}, holds for all 1 < k < n
except for 1 < ¢ < 5 < n, for which we have (e; = €}) A
(e; =e€i).
Definition 3 Neighbor hypothesis

Two hypotheses H and H' are neighbors iff H and H'

differ by a word move or a word swap.

The search process can be described with the following
algorithm:

Algorithm 2 Decoding with Hypothesis Reshuffling

Input: target sentence 1" = tits - - ty,.

QOQutput: source sentence S = 5182+ Sm.

Data Structures:

a priority queue Q for hypotheses.

a base model M; for candidate hypothesis;
a model M, for rescoring the candidate
hypotheses and their neighbors.

Models:

1. Using the decoder for M, find the top N hypotheses.
Score the hypotheses with Mz, and then add these
hypotheses to Q.

2. Repeat Step 3-7, until there is no change of the top
K hypotheses in Q:

For each of the top K hypotheses in Q
Nu + neighbor set(H);
for each H' € Ny
score H' with M
Q« H'

Report the hypothesis with the highest score in Q as
the translation of 7'

S N R

The choice of the value N and K is a trade-off between
speed and accuracy. A large N and K make the hill-
chimbing search in the hypothesis neighborhood less likely
to stop at a local maximum, while the decoding process
takes more time. In experiments reported here, N= 12
and K = 6 was selected by trial and error.

When we apply the algorithm, we often let M; “borrow”
the translation parameters from M, because in general
the translation distribution of a source word in a more
advanced model is less ambiguous and more accurate [3].

4. EVALUATION

Two experiments were conducted to evaluate the per-
formance of the new stack decoder + reshuffling algorithm
(henceforth SD+R algorithm). In the first experiment,
we compared the performance of the algorithm (with fast
stack decoder for the base model, henceforth FSD+R al-
gorithm) with that of the IBM stack decoder for Model 3.
In the second experiment, we compared the performance
of two different SD+R algorithms for our structure-based
model® [3]: the first one used IBM Model 1 as the base
model and applied the fast stack decoding algorithm to
find the hypothesis candidates (FSD+R); the second one
used IBM Model 3 as the base model and applied the IBM
stack decoder to find the hypothesis candidates (IBM+R).
Table 2 compares the performance: among the successfully
decoded sentences, the IBM decoder and IBM+R decoder
had higher accuracy (Accuracy column). However, the
different algorithms performed similarly if the accuracy is

2 A slight modification was made for the reshuffling algorithm
for the structure-based model — we introduced phrase move
and phrase swap in addition to word move and word swap in
defining the neighboring hypotheses.

Model | Decoder | Total | Failed | Corr. | Okay Incorr. | Accuracy | Accuracy®
Model 3 IBM 367 28 191 68 80 66.4% 61.3%
Model 3 FSD+R 367 2 188 74 103 61.6% 61.3%
SModel IBM+R 367 28 202 77 60 70.9% 65.5%
SModel FSD+R 367 2 203 76 86 66.0% 65.7%

Table 2:

Performance Comparison. The first row is the performance of IBM Model 3 with the stack decoder. The

second row is the performance of IBM Model 3 with fast stack decoder and hypothesis reshuffling. The third row is
the performance of the structure-based model with the IBM stack decoder and hypothesis reshuffling, and the fourth
row is the performance of the structure-based model with fast stack decoder and hypothesis reshuffling. The “failed”
column lists the number of sentences for which the search was aborted. “Accuracy” was calculated with respect to the

successfully decoded sentences, and “Accuracy*”

was calculated with respect to the total input sentence (367). Here a

correct translation gets 1 credit; an okay translation gets 1/2 credit; and an incorrect translation gets 0 credit.

Model | Decoder | Total Errors | S(e) > S(e’) | S(e) < S(e')
Model 3 | IBM 148 17 (11.5%) | 131 (38.5%)
Model 3 | FSDIR 77 26 (14.7%) | 151 (85.3%)
SModel | IBMIR 137 18 (13.1%) | 119 (36.9%)
SModel | FSDIR 162 28 (17.3%) | 134 (82.7%)

Table 3: Reference vs. Machine-Made Translations. S(e) is the score of reference translation, S(e') is the score of the
machine made translation. When S(e) > S(e'), we know, for sure, that a decoding error has occurred

calculated among all input sentences (Accuracy* column).
This is because the IBM decoder failed on more sentences,
and usually those sentences were difficult ones and likely
to result in errors with the FSD+R algorithm.

For those erroneous (okay and incorrect) translations,
Table 3 compares their model scores with that of the
reference translations. When a reference translation has
a higher score than an erroneous translation, we know
for sure that the decoder has made an error. Otherwise
the error may be resulted from either the decoder or the
model. Here FSD+R had higher known decoding error
rate than the IBM decoder (Model 3) or the IBM decoder
with reshuffling (structure-based model) had. However,
since FSD+R decoded more sentences, and the IBM de-
coder failed on those extra sentences, it was likely that
the FSD4+R decoder made more mistakes on these diffi-

cult sentences and resulted in higher decoding error rate.

While the new algorithm does not improve the transla-
tion accuracy, its biggest advantage is its decoding speed.
Using fast stack decoder for the base model, we do not have
to differentiate hypotheses with the same prefix string but
different alignments. Therefore we reduce the number of
hypotheses dramatically. Although we need extra time in
the reshuffling phrase, we found the new decoder worked 4-
5 times faster than the IBM decoder did for Model 3. The
speed advantage was more evident for the structure-based
model. Since the IBM decoder was not directly applicable
to this model, it had to be coupled with the reshuffling
algorithm anyway. Therefore the time reduction resulting
from switching from the IBM decoder to the fast stack
decoder was fully observed. The IBM+R decoder could
spend hours on some long sentences, while the FSD+R
decoder normally found a translation within 15 minutes.

Another advantage of the new decoding algorithm is its
general applicability. Base model decoding plus reshuf-
fling according to an advanced model provides a general

framework for any complicated models.

5. CONCLUSIONS

The base model decoding plus reshuffling algorithm
achieved performance comparable to the IBM stack de-
coder. It works much faster, and it is generally applicable
to more complicated models.

6. REFERENCES

1. P. F. Brown, S. A. Della-Pietra, V. J Della-Pietra, and
R. L. Mercer. The Mathematics of Statistical Machine
Translation: Parameter Estimation. Computational
Linguistics, 19(2):263-311, 1993.

2. C. Tillmann, S. Vogel, H. Ney, and A. Zubiaga. A DP-
based Search Using Monotone Alignments in Statistical
Translation. In Proceedings of ACL/EACL’97, pages
313-320, Madrid, Spain, 1997.

3. Y. Wang and A. Waibel. Modeling with Structures
in Statistical Machine Translation. In Proceedings of

COLING-ACL ’98, Montréal, Canada, 1997.

4. A. L. Berger, P. F. Brown, S. A. Della Pietra,
V. J. Della Pietra, J. R. Gillett, J. D. Lafferty, R. L.
Mercer, H. Printz, and L. Ures. Language Translation
Apparatus and Method Using Context-Based Transla-
tion Models. United States Patent No. 5,510,981, 1996.

5. Y. Wang and A. Waibel. Decoding Algorithm in
Statistical Machine Translation. In Proceedings of
ACL/EACL’97, pages 366-372, Madrid, Spain, 1997.

6. S. Niessen, S. Vogel, H. Ney, and C. Tillmann. Mod-
eling with Structures in Statistical Machine Transla-
tion. In Proceedings of COLING-ACIL ’98, Montréal,
Canada, 1997.

