
FAST DECODING FOR STATISTICAL MACHINE

TRANSLATION

Ye-Yi Wang Alex Waibel

Language Technologies Institute

School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213, USA

ABSTRACT

We investigated an e�cient decoding algorithm for sta-
tistical machine translation. Compared to the other algo-
rithms, this new algorithm is applicable to di�erent trans-
lation models, and it is much faster. Experiments showed
that the algorithm achieved an overall performance com-
parable to the state of the art decoding algorithms.

1. INTRODUCTION

A statistical machine translation system consists of three
sub-tasks: the modeling task describes machine transla-
tion processes with stochastic models; the learning task
estimates the parameters in the models; and the decoding
task searches for the translation that has the highest score
according to the models. [1, 2, 3] described di�erent trans-
lation models and their learning algorithms. [4, 2, 5, 6]
introduced di�erent decoding algorithms. However, those
decoding algorithms have many limitations. Below is a
brief review of these algorithms:

1.1. IBM Stack Decoder

In the IBM Stack Decoder [4], a hypothesis is comprised
of a source sentence pre�x string and an alignment between
the pre�x string and the target (input) sentence. Each hy-
pothesis is associated with a model score. For a given
target sentence, each subset of the words in that target
sentence is associated with a priority queue. A hypothe-
sis is put into one of the priority queues according to the
target words that have been accounted for by that hypoth-
esis. Because there are 2n (n is the target sentence length)
subsets of target words that can be accounted for by a hy-
pothesis, the number of priority queues is exponential in
the target sentence length. A long target sentence will
lead to huge number of priority queues; hence too much
memory space will be allocated. When an input target sen-
tence is longer than 15 words, the decoder can allocated
more than 1 GB memory. Exponential number of priority
queues also implies that exponential number of hypothe-
ses have been generated by the decoder. Therefore the
decoder is extremely slow. In our experiments with IBM
decoder for Model 3 [1], we let the decoder stop searching
and register a failure whenever it allocated more than 750
MB memory. Table 1 shows the number of sentences that
IBM decoder had failed, as well as the number of states
being extended.

Sentence Total Failed Pct Extended

Length Hypo #

1-4 81 0 0% 16

5-8 128 0 0% 2,705

9-12 101 0 0% 11,660

13-16 41 19 46.3% 63,472

17-20 16 9 56.3% 145,768
All (1-20) 367 28 7.6% |

Table 1: Performance for the IBM Model 3 Stack De-
coder: Input target sentences are grouped according to
their lengths. The second column lists the total number of
sentences in each group. The third column lists the num-
ber of sentences that the decoder failed on. The fourth
column lists the failure percentage. The �fth column lists
the average numbers of hypotheses being extended by the
decoder, which were collected with those successfully de-
coded sentences.

1.2. Dynamic Programming Decoding

Algorithms

[2] and [6] described dynamic programming decoding al-
gorithms for statistical machine translation. While dy-
namic programming algorithms worked fast, they imposed
a strong constraint on the translation model: no crossover
was allowed in word-to-word alignments between paral-
lel sentences. This constraint basically requires that the
source and target languages have very similar word orders.
In case when the word orders are di�erent (like English
and German), a preprocessor is required to make the two
languages similar.

1.3. A* Decoding Algorithm

[5] described an A* decoding algorithm. While this algo-
rithm was much faster than the IBM decoder, it was only
applicable to IBM Model 1 and Model 2, since its scoring
mechanism relied on the reinterpretation of a probabilistic
equation speci�c to the models. It is not clear how this
algorithm can be used for more complicated models.

In summary, the current decoding algorithms are either
too ine�cient or too restrictive. And all of them are not
generally applicable. For example, they will not work with
the more complicated structure-based model [3].

2. FAST STACK DECODER FOR

MODEL 1 AND MODEL 2

The high failure rate and the slow speed of the IBM
stack decoder were due to the same reason | retaining the
alignment between a source sentence pre�x and the target
sentence in a hypothesis. Because the number of possible
alignments is exponential in sentence length, this results
in exponential number of priority queues and hypotheses.
Therefore the algorithm is too expensive with respect to
both time and space complexities.

On the other side, e�cient algorithms are available for
Model 1 and Model 2 to calculate P (g j e) =

P
A
P (g j

A;e)1, the a posteriori probability of a target sentence g
given a source e; over all possible alignments A. Therefore
we do not have to make assumption about the alignment
between a source sentence pre�x and the target sentence.
Instead, a hypothesis can be just a pre�x string of the
source sentence, whose score is the likelihood of the target
sentence summed over all possible alignments. In doing so,
we greatly reduced the size of hypothesis space and make
the decoding algorithm more e�cient.

To be speci�c, here we present a modi�ed fast decod-
ing algorithm for Simpli�ed Model 2 [5]. The decoder for
Model 1 can be simply derived from it.

An important issue here is how we score a hypothesis.
In Simpli�ed Model 2, the equation for the a posteriori

likelihood of a target sentence g given a source sentence e
can be used to assess a hypothesis:

P (g j e) = �

lX
a1=0

� � �

lX
am=0

mY
j=1

t(gj j eaj)al(aj j j)

= �

mY
j=1

lX
i=0

t(gj j ei)al(i j j) (1)

here l = jej and m = jgj.

Although (1) was obtained from the alignment model,
it would be easier for us to describe the scoring method if
we interpret the last expression in the equation as follows:
each word ei in the hypothesis contributes the amount
� t(gj j ei)�al(i j j) to the probability of the target sentence
word gj .

Given the target sentence G = g1g2 � � � gm, assume that
the source sentence length is l at this moment. The hy-
pothesis Hl = l : e1; e2; � � � ; ek has hypothesized k words as
the pre�x of the source sentence of length l. Then the prob-
ability mass contributed by the source word ei (0 � i � k)
to the target word gj is � t(gj j ei)�al(i j j): For a source
position k < i � l; since the source word at that posi-
tion has not be introduced into the pre�x, its contribution
to the target word gj is averaged over all possible source

words, which is � al(i j j)�
PjLj

k=0
Pr(wk)�t(gj j wk): Here

jLj is the size of the source language lexicon, wk is the k
th

1e and g are used here because English and German are the

source and target languages in our system.

word in the source lexicon, and Pr(wk) is the prior proba-
bility of the source word wk; which can be obtained with
the maximum likelihood estimator. Therefore, if we use
�kl(j j i;Hl) to denote the contribution of the ith source
position of Hl to the probability mass of the jth target
word, we have

�kl(j j i;Hl) = (2)�
� al(i j j)t(gj j ei) 0 � i � k

� al(i j j)
P

jLj

k=0
Pr(wk)t(gj j wk) k < i � l

The translation model score of Hl is therefore

�(Hl) =

mY
j=1

lX
i=0

�kl(j j i;Hl) (3)

In practice, since we do not make any assumption of
the source sentence length, the score of a hypothesis H =
e1; e2; � � � ; ek has to be averaged over all possible sentence
lengths:

�(H) =

LmX
i=k

Pr(k jm)� �(Hi) (4)

here Pr(k j m) is the source sentence length distribution
conditioned on the target sentence length, which was mod-
eled with Poisson distributions. Lm is the maximum sen-
tence length allowed.

Because our objective is to maximize P (e;g), we have
to include the ngram language model probability of the
pre�x string. Therefore the score of H is

S(H) = �(H)�

kY
i=1

P (ei j ei�N+1 � � � ei�1): (5)

Because of the di�erent number of factors in the lan-
guage model score, hypotheses of di�erent pre�x lengths
are not comparable. Therefore hypotheses are stored in
di�erent priority queues according to their pre�x lengths.
This results in the following algorithm:

Algorithm 1 Fast Stack Decoder for Simpli�ed Model 2

Input: target sentence T = t1t2 � � � tn.
Output: source sentence S = s1s2 � � � sm.
Data Structures:

a set of priority queues Q0Q1� � �QLm

for hypotheses.

1. Initialize with a null hypothesis (with pre�x string
length 0) H0, compute S(H0) with (2), (3), (4) and
(5).

2. Q0 H0

3. For each Q 2 fQ0Q1� � �QLm
g and H 2 Q

4. set the threshold for Q

5. if S(H) > Threshold(Q)

6. for each promising source word s

7. H 0= append(H; s)

8. score H 0 with (2), (3), (4) and (5).

9. Q
jH

0
j
 H 0

10. exit the loop if N complete source sentences are
available in Q's.

11. Report the hypothesis with the highest score in Q0s
as the translation of T .

3. HYPOTHESIS RESHUFFLING

The aforementioned algorithm is only applicable to
Model 1 and Model 2. There is no e�cient way to com-
pute the likelihood of a target given a source over all pos-
sible alignments for more complicated models. To apply
the algorithm to those models, we present a hypothesis
reshu�ing algorithm here. The idea of hypothesis reshuf-

ing was based on the observation that the fast stack de-
coder often found, in the top N translation candidates,
the correct translations, or almost correct translations |
translations that had the correct bags of words arranged
in wrong orders.

The hypothesis reshu�ing algorithm uses the decoder
for a simple model (e.g., the fast stack decoder for Simpli-
�ed Model 2) to �nd top N hypotheses. It then searches
for the translation that is the best according to a more
complicated model, in the neighborhood of those candi-
date hypotheses. We de�ne the following terminology to
describe the algorithm:

De�nition 1 Word move

Two hypotheses H = e1e2e3:::en and H 0 = e01e
0
2e

0
3:::e

0
n

di�er by a word move if there exist 1 � i � j � n such
that either of the following holds:

(e1:::ei�1 = e01:::e
0
i�1) ^ (ei = e0j) ^ (ei+1:::ej =

e0i:::e
0
j�1) ^ (ej+1:::en = e0j+1:::e

0
n) or

(e01:::e
0
i�1 = e1:::ei�1) ^ (e0i = ej) ^ (e0i+1:::e

0
j =

ei:::ej�1) ^ (e
0
j+1:::e

0
n = ej+1:::en)

De�nition 2 Word swap

Two hypotheses H = e1e2e3:::en and H 0 = e01e
0
2e

0
3:::e

0
n

di�er by a word swap if ek = e0k holds for all 1 � k � n

except for 1 � i � j � n, for which we have (ei = e0j) ^
(ej = e0i):

De�nition 3 Neighbor hypothesis

Two hypotheses H and H 0 are neighbors i� H and H 0

di�er by a word move or a word swap.

The search process can be described with the following
algorithm:

Algorithm 2 Decoding with Hypothesis Reshu�ing

Input: target sentence T = t1t2 � � � tn.
Output: source sentence S = s1s2 � � � sm.
Data Structures:

a priority queue Q for hypotheses.
Models: a base model M1 for candidate hypothesis;

a model M2 for rescoring the candidate
hypotheses and their neighbors.

1. Using the decoder for M1, �nd the top N hypotheses.
Score the hypotheses with M2, and then add these
hypotheses to Q.

2. Repeat Step 3-7, until there is no change of the top
K hypotheses in Q:

3. For each of the top K hypotheses in Q

4. NH neighbor set(H);

5. for each H 0 2 NH

6. score H 0 with M2

7. Q H 0

8. Report the hypothesis with the highest score in Q as
the translation of T .

The choice of the value N and K is a trade-o� between
speed and accuracy. A large N and K make the hill-
climbing search in the hypothesis neighborhood less likely
to stop at a local maximum, while the decoding process
takes more time. In experiments reported here, N= 12
and K = 6 was selected by trial and error.

When we apply the algorithm, we often letM1 \borrow"
the translation parameters from M2, because in general
the translation distribution of a source word in a more
advanced model is less ambiguous and more accurate [3].

4. EVALUATION

Two experiments were conducted to evaluate the per-
formance of the new stack decoder + reshu�ing algorithm
(henceforth SD+R algorithm). In the �rst experiment,
we compared the performance of the algorithm (with fast
stack decoder for the base model, henceforth FSD+R al-
gorithm) with that of the IBM stack decoder for Model 3.
In the second experiment, we compared the performance
of two di�erent SD+R algorithms for our structure-based
model2 [3]: the �rst one used IBM Model 1 as the base
model and applied the fast stack decoding algorithm to
�nd the hypothesis candidates (FSD+R); the second one
used IBM Model 3 as the base model and applied the IBM
stack decoder to �nd the hypothesis candidates (IBM+R).
Table 2 compares the performance: among the successfully
decoded sentences, the IBM decoder and IBM+R decoder
had higher accuracy (Accuracy column). However, the
di�erent algorithms performed similarly if the accuracy is

2A slight modi�cationwas made for the reshu�ing algorithm

for the structure-based model | we introduced phrase move

and phrase swap in addition to word move and word swap in

de�ning the neighboring hypotheses.

Model Decoder Total Failed Corr. Okay Incorr. Accuracy Accuracy*

Model 3 IBM 367 28 191 68 80 66.4% 61.3%
Model 3 FSD+R 367 2 188 74 103 61.6% 61.3%

SModel IBM+R 367 28 202 77 60 70.9% 65.5%

SModel FSD+R 367 2 203 76 86 66.0% 65.7%

Table 2: Performance Comparison. The �rst row is the performance of IBM Model 3 with the stack decoder. The
second row is the performance of IBM Model 3 with fast stack decoder and hypothesis reshu�ing. The third row is
the performance of the structure-based model with the IBM stack decoder and hypothesis reshu�ing, and the fourth
row is the performance of the structure-based model with fast stack decoder and hypothesis reshu�ing. The \failed"
column lists the number of sentences for which the search was aborted. \Accuracy" was calculated with respect to the
successfully decoded sentences, and \Accuracy*" was calculated with respect to the total input sentence (367). Here a
correct translation gets 1 credit; an okay translation gets 1/2 credit; and an incorrect translation gets 0 credit.

Model Decoder Total Errors S(e) > S(e0) S(e) � S(e0)

Model 3 IBM 148 17 (11.5%) 131 (88.5%)
Model 3 FSD+R 177 26 (14.7%) 151 (85.3%)

SModel IBM+R 137 18 (13.1%) 119 (86.9%)

SModel FSD+R 162 28 (17.3%) 134 (82.7%)

Table 3: Reference vs. Machine-Made Translations. S(e) is the score of reference translation, S(e0) is the score of the
machine made translation. When S(e) > S(e0), we know, for sure, that a decoding error has occurred

calculated among all input sentences (Accuracy* column).
This is because the IBM decoder failed on more sentences,
and usually those sentences were di�cult ones and likely
to result in errors with the FSD+R algorithm.

For those erroneous (okay and incorrect) translations,
Table 3 compares their model scores with that of the
reference translations. When a reference translation has
a higher score than an erroneous translation, we know
for sure that the decoder has made an error. Otherwise
the error may be resulted from either the decoder or the
model. Here FSD+R had higher known decoding error
rate than the IBM decoder (Model 3) or the IBM decoder
with reshu�ing (structure-based model) had. However,
since FSD+R decoded more sentences, and the IBM de-
coder failed on those extra sentences, it was likely that
the FSD+R decoder made more mistakes on these di�-
cult sentences and resulted in higher decoding error rate.

While the new algorithm does not improve the transla-
tion accuracy, its biggest advantage is its decoding speed.
Using fast stack decoder for the base model, we do not have
to di�erentiate hypotheses with the same pre�x string but
di�erent alignments. Therefore we reduce the number of
hypotheses dramatically. Although we need extra time in
the reshu�ing phrase, we found the new decoder worked 4-
5 times faster than the IBM decoder did for Model 3. The
speed advantage was more evident for the structure-based
model. Since the IBM decoder was not directly applicable
to this model, it had to be coupled with the reshu�ing
algorithm anyway. Therefore the time reduction resulting
from switching from the IBM decoder to the fast stack
decoder was fully observed. The IBM+R decoder could
spend hours on some long sentences, while the FSD+R
decoder normally found a translation within 15 minutes.

Another advantage of the new decoding algorithm is its
general applicability. Base model decoding plus reshuf-

ing according to an advanced model provides a general

framework for any complicated models.

5. CONCLUSIONS

The base model decoding plus reshu�ing algorithm
achieved performance comparable to the IBM stack de-
coder. It works much faster, and it is generally applicable
to more complicated models.

6. REFERENCES

1. P. F. Brown, S. A. Della-Pietra, V. J Della-Pietra, and
R. L. Mercer. The Mathematics of Statistical Machine
Translation: Parameter Estimation. Computational

Linguistics, 19(2):263{311, 1993.

2. C. Tillmann, S. Vogel, H. Ney, and A. Zubiaga. A DP-
based Search Using Monotone Alignments in Statistical
Translation. In Proceedings of ACL/EACL'97, pages
313{320, Madrid, Spain, 1997.

3. Y. Wang and A. Waibel. Modeling with Structures
in Statistical Machine Translation. In Proceedings of

COLING-ACL '98, Montr�eal, Canada, 1997.

4. A. L. Berger, P. F. Brown, S. A. Della Pietra,
V. J. Della Pietra, J. R. Gillett, J. D. La�erty, R. L.
Mercer, H. Printz, and L. Ures. Language Translation
Apparatus and Method Using Context-Based Transla-

tion Models. United States Patent No. 5,510,981, 1996.

5. Y. Wang and A. Waibel. Decoding Algorithm in
Statistical Machine Translation. In Proceedings of

ACL/EACL'97, pages 366{372, Madrid, Spain, 1997.

6. S. Niessen, S. Vogel, H. Ney, and C. Tillmann. Mod-
eling with Structures in Statistical Machine Transla-
tion. In Proceedings of COLING-ACL '98, Montr�eal,
Canada, 1997.

