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ABSTRACT 2. BASIC MODEL

The work reported in this paper was the result of the need to |&he basic model used a combined log distribution model of each

bel a large corpus of spontaneous, task-oriented dialogue wifthonemic segment (as in [5]), and assumed that a change in the
prosodic prominences. A computational model using only worduration of a word is divided equally among the segments of that

duration, part of speech and a dictionary lookup of each wordword in terms of z-scores for duration. Therefore, the change

canonical phonemic contents was trained against the results lmétween a word’s predicted duration and actual duration could

a human coder marking prominence. Because word duratiobg measured in terms of a single z-score calculated for all of a

were normalised, it was possible to set a common threshold for allord’s segments. This value, called here the ’k-score’, was used
members of a form class above which the lexically stressed syllas a measure of how much a word had been 'stretched’ or 'com-

bles were classed as prominent. The method used is presented pressed’ from a citation form.

the relative importance of duration information, phonemic con-

tents, syllabic context and part of speech information is explored.he predicted duration, d, of any word may be expressed as:

The automatic coder was validated against unseen material and

achieved a 58% agreement with a human coder. Further inves- n . .

tigation showed that three humans coders agreed no better with d= Zexp(“(lch(l)) M 1)

each other than each agreed with the computational model. Thus, i=1

although the automatic system did not conform very well to th

performance of any one human coder, it conformed as well as' ™y = the number of phonemes in a word,

another human coder might. k = a constant function of average segment length,

u = the mean log duration of a segment,
1. INTRODUCTION o = the standard deviation of the log distribution of a seg-
_ _ _ ment’s duration

This paper presents a practical approach to the assignment of 5, _ optional multiplier which defaults to 1. (see Table
prosodic prominencesto a large task-oriented corpus of dialogues 1)
(the HCRC Map Task Corpus [1]). The size of the corpus - 128
dialogues, each several minutes long - made it desirable to assiiscores were calculated by assuming an initial k-score of 0 for
prominences automatically. Our aim was to produce a promeach segment in a word. If the rdting value for the predicted
nence assignment model which would mimic the perceptions @ford duration (according to the equation above) was higher than
a group of subjects as closely as possible. For the purposestgk observed word duration, a lower k-score (-0.001) was used.
this study, a word was classed as prominent if it contained a pnif the predicted word duration was lower than the observed dura-
mary stressed syllable, and non-prominent if it did not. It wouldiion, a higher k-score (+0.001) was used. This process was contin-
however, be quite possible to alter the constraints of the modgkd until the predicted and actual word durations were the same.
to account for the more conventional notions of pitch-accent orhe value of the k-score at this point was taken as a measure of
nuclear-stress. the difference between predicted and observed word durations. A

threshold k-score was set separately for each form class to max-
The HCRC Map Task Corpus has been word segmented by hapgise agreement with a single human coder. Words falling below

giving all word durations. Other acoustic factors such as ampline threshold for their form were labelled as unstressed.

tude, pitch and vowel quality (All of which affect the perception

of vowel quality) are not as readily available. For this reason durarhere were two major constraints on the resources available to us.

tion was used as our primary acoustic measurement for automatirstly the amount of phonetically labelled spontaneous speech

cally determining prominence. The model predicts a duration faas limited to only two dialogues. Secondly the online dictionary

the stressed form of each word and assesses the plightle e had available (CELEX [2]) is based on standard English pro-

observed word is stressed by comparing its duration with the prewunciation, whereas most of the Speakers in the map task have

diction. Glaswegian or other Scottisitcents. In order to explore the ef-
fects of different factors on the success of the model and to work
within these constraints six different models were tested. Two
were controls and another four made different use of syllabic and
phonemic information.



2.1. Control model 2.4. Syllabicy, o model

This model acted as a control. If a word was open class (in thisstead ofM, ¢« ande were varied to account for syllabic con-
case either an adjective, noun or verb - adverbs were regardedtest. Data was collected from two phonetically hand segmented
closed class) then it was automatically stressed. If the word wapontaneous dialogues. For each syllabic context (for example
closed class (anything else) it was regarded as unstressed. HBessed segment in 3 segment monosyllabic word) a log distri-
success of this model gives an indication of possible successlition of segmental durations was calculated giving a diffegent

assigning stress without any duration information. andos for each context. When estimating the k-score of a word
these varying: ando were used in Equation 1. A problem with
2.2. Simpley, o model the syllabic multipliers described above (The Syllablcmodel)
was that they were calculated on the basis of a phonetically bal-
One log distribution was usef: = —2.7478(64ms)c =  anced read corpus. This model explored the advantage of using

0.5702(—1sd = 36ms, +1sd = 113ms)) for all phonemes, so distributions calculated from spontaneous speech.

that there was effectively no differentiation between phonemes.

Expected word durations therefore depended on how many se@-5 Phc)nemim7 o model

ments there were in any given word. Again this model acted as

a control showing how good a model with no knowledge of eixx ands now depended on a log distribution of segmental dura-
ther the phonemic contents or the syllabic structure would be &bns for each phoneme as observed in the balanced corpus in [4].

predicting prominence. The CELEX online dictionary [2] was then used to establish the
likely phonemic contents of each word in the corpus. The problem
2.3. SyllabicM model that resulted from this was whether it was valid to model different

Scottishaccents with Standard English data. However, what was
M in equation 1 was varied to account for syllabic informationmportant here was not the precise phoneticliguaf any given
whereag: ando were as above (the same falt phonemes). Ta- segment, but rather its general class. As long as any differences in
ble 1 shows the values fav/ used which depended on syllabic pronunciation are small enough that their corresponding durations
context. These values, based on durations established by [3] fraare also similar, the predicted word durations should be relatively
measurements taken from a phonetically balanced read corpus [Aliable.
are proportions with regard to the mean segmental duration of
a segment in a three segment stressed monosyllabic word. Farg. Combined model
example if a segment is predicted to be 100ms in a 3 segment
stressed monosyllabic word then, if it is in an unstressed 4 se@his model combined the Syllabi@’ model with the Phonemic
ment monosyllabic word, the duration is reduced to 36.6ms.  u, o model so that both segmental content and syllabic context
were represented.

3. METHOD FOR
MANUALLY-LABELLING THE TEST

Syllabic Multipliers DIALOGUES
Syllabic Context )
mono _inital _middle _final Two test dialogues were selected from the Map Task Corpus.
Stressed | 1seg 1.632 1.088 1.008 1.600 Three subjects,b,c who were experienced phoneticians were
2 seg 1163 0.775 0.718 1.140 Presentedwith the dialogues. They could see a speech waveform,
3 seg 1.000 0680 0630 1.000 and hearselected segments of speech as much as they felt nec-
4 seg 0.949 0632 0586 0.93p e€ssary. However, subjects were encouraged to make decisions as
5plusseg| 0.887 0592 0548 0.87p Auicklyaspossible.
Unstressed % €9 8233 83% 82?2 822; The subjects were asked to decide for each word in the dialogues
3 223 01366 0.348 0'390 0.60 ) whether that word so_u_nd_ed prominent in any way. They were not
4 seg 01366 0.348 0‘390 0.603 asked_ to make spt_acmc judgeme_nts about stress. If a Word_was
5 plus se 01366 0.348 0'390 0.603 percelve_d as prominent, the subjects marked the most prominent
P 9 © . . : syllable in that word. All word and syllable boundaries had pre-

viously been marked for the subjects.

The word segmentation used by the subjects and the automatic
model were not identical (See Figure 1). The subjects used
word and syllable segmentation from the phonetically labelled

Table 1. Multipliers for different syllabic context. For example ialoaues whereas the automatic coder used word seqmentation
if a segment is in a three segment stressed mono-syllabic Wogaa 9 9

the multiplier is 1000, if it is in a four segment unstressed ﬁnalavailableforthe vyhole corpus (it_s intend_ed domain) and predicted
syllable in a polysyllabic word the multiplier is 0.6 (see equationsyllable boundaries on the basis of which segmental model was
1).
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L] right| L] you got| E| ma withy extinct] volcang ﬂ_—l'-l

Figure 1: An example of some prominences coders by three human subjects (a,b,c) and the automatic codengiks word
boundariessinter word syllable boundaries, and a circfedrominences on the speech “right, you got a map with an extinct volcano”.
The speech waveform is shown at the top. subjects were asked to mark prominences at the start of the syllable nucleus

5. CONCLUSION

As stated at the beginning of this paper, our primary objective
used. The error in word boundary placement was low (mean afas to solve a coding problem over a large corpus. The automatic
Oms and standard deviation of 17ms) and although the syllabf@der selected, although its results have to be treated with caution,
boundary error was higher (a mean varying from 11ms to 23maas a fairly good approximation to a human coder. Apart from
with an standard deviation varying from 37ms to 42ms dependirgplving a practical problem these results have some interesting
on the model) 85% of words in the Map Corpus are monosyllabiémplications.

Most errors caused by differences in syllabic and word boundaries
were avoided by setting a threshold for matching stress markgrfionemic content was not as important as syllabic context when
(within 30ms of each other). A dynamic programming a|gorithnpormalising duration. This was particularly true for long words

was used to count agreement between the automatic and hunf4eTe segments are significantly reduced. The syllabic context

coders. was a fundamental factor in this reduction. More surprising was

that combining phonemic and syllabic information produced only

4. RESULTS OF A COMPARISON OF a minor improvement in results when using the training data
and appeared to be worse at generalising duration change across
DIFFERENT MODELS speakers and unseen data. Phonemic content is not independent

Each model was run on a test dialogue, and evaluated in terrﬂg fy”,?.b'c context.“ Fo: example the p_honemgcc_urs_mostly
s “th” in the word “the”. Because of this the distribution calcu-

of the numbers of stresses which agreed with or differed fro red | b fob tions oiill und fimat
the stresses marked in the manually-labelled test dialogue. T aeed rortr_1 a a';gtf].““m ?fr_SO tcl) _servatlon d un erels ima et
results were as shown in Table 2. The models were then applied ¢ duration of this significantly in a stressed open class context

an unseendialogue coded by codeThe new dialogue contained €.g. the "th” in *mother”. This lack of independence between

speech from one speaker from the training dialogue and one mﬁlpontemlc ckonte?tsdand sy:lat(;ufj_sﬁtructure s whld?spread. Tahklng
speaker (See Table 3). e stopss,k we find a marked difference in the frequency that

syllables containing them are of a particular segmental length.
The combined model was the most successful with the training370 Of syllables containgare 2 or 3 segments in length whereas
data but not with unseen data. For the unseen data the sylabic /3% Ofk syllables are this length and an enormous 94% afe
model is most successful agreeing with the human coder 58% &f0" 3 segments long. Because of syllabic structure, vowel and
the time. It would seem that this model generalises more effe€onsonant distributions are also markedly different. For example
tively across speakers and new data. For this reason the syllai¢*0 Of syllables containing the dipthoag(The 'i" in 'bite”) are

M model was selected as our final model. A comparison betweéhS€gment syllables. This lack of independence between phone-

the syllabich model,A, and all three human coders who coded™Mi¢ content and syllabic structure together with the fundamental
the training set is shown in Table 4. important of syllabic structure in word duration means that gen-

eralising durational effects on the basis of syllabic context rather
There is good agreement betwea#\, b-A, andb-a. In other than phonemic content appears to be more effective.

words, the model predicted stress placement much like two of the ) )
subjects. The third subjedt, seemed to agree equally poorly with Despite the considerable differences between the ATR database

the other subjects as with the model. (used to calculate syllabic post modifiers and the phonemic dis-



tributions) and the spontaneous Glaswegian speech in the corpGéven the disagreement between coders it might be worth asking
the models that used this data did better than the model whievhether making a simple binary decision on prominence in spon-
used the spontaneous speech to calculate distributions for ségreous speech is possible. Perhaps a graduated coding would
mental and syllabic context. Possibly the phonetically marked upave produced better results. Although this may present prob-
data was too sparse to model such duration effects. However dam in terms of intonational phonology it seems difficult to jus-
other possible explanation is that the read speech was less variatifie a coding system which leads to such poor agreement. Work
meaning that, in small cell sizes, the means and standard devéasried out by Grover et al [6] suggests that although boundary
tions calculated were more accurate. Thus, although the modsttength can be reliably coded on a four point scale, a magni-
overestimated the expected duration of the words in spontanedusle estimation scale produces better results for the judgement of
speech, it did so consistently. When thresholds were generatprbminence.

by comparing to human coding decisions these more consistent
results led to better performance. However the results here are far from conclusive. We had only

two phonetically segmented dialogues available to produce and
test our model. Individual differences in these dialogues may
well have confounded our results. Practical problems such as
the unavailability of an on-line dictionary for Scottish (or even

Comparison between Models: Training Data
hits misses false alarms %accuracy

Control 550 303 132 3564 rhotic) pronunciatio_n a_nd differences in word segmentation may

Simpley, o 367 208 158 50.07 also have caused significant problems.

Syllab!cM 420155 196 54.47 Overall the automatic coder was sufficient for our own purposes

Syllabm_z, 7 381 194 169 5121 and the duration normalisation described here, despite clear draw-
Eg%nti::gl’ 7 ig; i;g gg ggzg backs, offered a practical solution for comparing word durations.

The results from the human coders raise questions concerning the
overall practicality of marking binary prominence but given the
limited scale of the study further work would be required to ex-
Table 2. Comparison of six models used to determine stresgjore this issue. The contributions of syllabic context, phonemic
placement (against coder a). Accuracyit{hits + misses + false contents and word class to a model of duration change were not
alarms) as a percentage. entirely predictable. Our results suggest that syllabic context is
the primary factor in a words duration especially when generalis-
ing across speakers.

Comparison between Models: Unseen Data
hits misses false alarms %accuracy REFERENCES

Control 365 336 127 44.08
Simpley, o 462 239 181 52.38 [1] Anne H. Anderson, Miles Bader, Ellen G. Bard, Eliza-
Syllabic M 538 163 220 58.41 beth Boyle, Gwyneth M. Doherty-Sneddon, Simon Garrod,
Syllabicu, o 467 234 180 53.01 Stephen Isard, Jacqueline C. Kowtko, Jan M. McAllister,
Phonemiq:, s | 493 208 214 53.88 Jim E. Miller, Catherine F. Sotillo, Henry S. Thompson, and
Combined 531 170 249 55.89 Regina Weinert. The HCRC Map Task Corpusanguage

and SpeeclB4(4):351-366, 1991.

[2] R. H. Baayen, R. Piepenbrock, and L. Gulikethe CELEX
Table 3. How well all six models performed when presented with  |exical Database (CD-ROM)Linguistic Data Consortium,
unseen data and a new speaker (against coder a). Accuracy = University of Pennsylvania, Philadelphia, PA, 1995. Version
hit/(hits + misses + false alarms) as a percentage. 2.5.

[3] W. N. Campbell. Multi-level timing in speechPhD thesis,
Sussex University, 1992.

Comparison between Model and Subjects . L

hits misses false alarms _ %accuracy [4] W.N. Cam_pbe.II. Multi-level tlmlng in spechAdvanced Tel-
aA | 420 155 196 54.47 lecommunications Research Institute Technical Re6a3.
b-A | 400 104 216 55.56 [5] W. N. Campbell and S. D. Isard. Segment durations in a syl-
c-A | 253 63 363 37.26 lable frame.Journal of Phonetics19:37-47, 1991.
b-a | 390 114 185 56.60 [6] C. Grover, B. Heuft, and B. Van Coile. The reliability of
c-a | 260 56 315 41.20 labelling word prominence and prosodioundary strength.
cb | 262 54 242 46.95 In A. Botinis, G. Kouroupetroglou, and G. Carayiannis, edi-

tors,Proceedings of an ESCA Workshop: Intonation: Theory,

Models and Applicationspages 165-168. ESCA and The
Table 4. Cross-comparison of each subject's stress assignments University of Athens, October 1997.

and the assignments of the sylla3i€ model to the training data
(Where Ais the automatic model, and a, b, and ¢ are the subjects).
Accuracy = hit/(hits + misses + false alarms) as a percentage.



