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ABSTRACT

Clear speech is characterised by longer segmental durations and
less target undershoot [9] which results in more extreme spectral
features. This paper deals with the clarity of vowels produced in
spontaneous speech in a large corpus of task-oriented dialogues.
We present an automatic technique for measuring vowel clarity on
the basis of a vowel’s spectral characteristics. This technique was
evaluated using a perceptual test. Subjects rated the ’goodness’
of vowels with different spectral characteristics with controlled
duration and amplitude and these results were compared with an
automatic rating. Results indicated that although agreement be-
tween subjects and the automatic measurement was poor it was as
poor as the agreement between subjects.

On the basis of these results we address the following questions:

1. Can subjects reliably judge the clarity of vowels excerpted
from spontaneous speech without duration cues?

2. Can a statistical model [3] reliably predict the subjects’ re-
sponse to such vowels?

1. INTRODUCTION

We often don’t say the same word the same way in different situ-
ations. If we read a list of words out loud we say them differently
from when we produce them, spontaneously, in a conversation.
Even within spontaneous speech there are wide differences in the
articulation of the same word by the same speaker. If you remove
these words from their context some instances are easier for a lis-
tener to recognise than others. The instances that are easier to
recognise share a number of characteristics. They tend to be care-
fully articulated, the vowels are longer and more spectrally dis-
tinct and there is less co-articulation. These instances have been
articulated more clearly than others.

Work in articulatory phonetics has concentrated on the acoustic
properties of ‘clear speech’ and the associated differences in ar-
ticulation [9]. It has been shown that clear speech is easier to
recognise and that it is more intelligible [10, 11]. This variation in
spectral quality does not appear to be random but is closely related
to prosodic structure [12], and to differences in redundancy [7, 6].

However spontaneous speech is often extensively reduced both in
terms of duration and spectral clarity. It is possible that our sensi-
tivity to such spectral change may differ significantly at different
levels of reduction. Can a vowel only get so clear or so unclear so
that any further change in spectral characteristics is perceptually
insignificant?

By producing a model of vowel variation change and comparing
the behaviour of the model to results from a perceptualexperiment
we hope to ascertain how sensitive human subjects are to spec-
tral change and how successfully a model can predict the human
response. If such a model reliably reflects human judgements it
can be used as an objective measurement of vowel spectral clarity.
Such an automatic measurementwould offer an alternative to time
consuming measurements by hand and allow the rapid spectral
measurement of thousands of vowels in large spontaneous speech
corpora.

2. MODELLING VOWEL CLARITY
VARIATION

In order to model vowel clarity variation we first produce a statis-
tical model which characterises a speaker’s vowel space. Vowels
produced in spontaneous speech are then related to this model
and results from this comparison are used to produce an objective
measurement of care of vowel articulation.

The model is based on a probability density function in two di-
mensions described by a mixture of Gaussians. The dimensions
relate to 1st and 2nd formant frequencies of voiced speech. The
model is built by applying the expectation maximisation (EM)
algorithm to pre-processed, normalised citation speech. The pre-
processing involves a transformation to the bark scale [14], use of
a curve fitting algorithm to estimate steady state formant values
within a vowel [2] and normalisation of both dimensions to give a
mean of 0 and a standard deviation of 1. For a detailed description
of the modelling and normalisation techniques see [3]. Figure 1a
shows a model of a speaker’s vowel space generated in this way.
Compare this to a 3 dimensional plot of spontaneous speech from
the same speaker (Figure 1b) where the centralisation and smear-
ing of vowel groups is clearly visible.

To use this model to score vowel clarity we take the vowel targets
from the vowel in spontaneousspeech (as computed using the pre-
processing techniques) and calculate the probability of the targets
appearing in the ’clear’ citation speech. In other words how close
to the ’hills’ in the model are to the targets. These probabilities
are then combined as an average log likelihood.

There are some clear drawbacks with this technique:

1. Although first and second formants are a good way to char-
acterise a vowel many other acoustic factors are involved in
a judgement of spectral characteristics.

2. Automatic formant trackers and automatic segmentation
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Figure 1: (a) Three dimensional view of a mixture of Gaussians statistical model of vowels produced in citation speech. Compare with
a similar view of the same speaker’s spontaneous speech. (b) Three dimensional view of spontaneous speech. A scatter plot of F1/F2
values from vowels in citation speech show how actual values produced relate to the vowel space. If the density of the scatter is plotted
as a third dimension a 3d plot of the vowel space is produced. No scale is marked due to pre-processing.

(both used to generate the model and select input data) are
not completely reliable. These automatic approaches will
introduce noise into both the model and the vowel clarity
measurement.

3. The citation speech used to build the speaker models was
not designed for this purpose. The clarity of this speech is
sometimes questionable and no attempt was made to pho-
netically balance the sample.

4. The model is trained on all vowels. If an ’unclear’ example
of one vowel has similar spectral characteristics to another
vowel the model cannot tell if it is a bad example of vowel
1 or a perhaps a better example of vowel 2.

5. The model is speaker dependent. A different model is pro-
duced for each speaker. Some speakers may be harder to
model than others.

6. The model ignores the phonetic context. Human subjects
could possibly compensate for perceived co-articulation
when judging vowel ’goodness’. Although using para-
metric curve fitting to estimate vowel targets reduces co-
articulatory effects to some extent the model itself does not
explicitly take intoaccount the identity of the surrounding
phonemes.

However the technique allows the automatic measurement of fif-
teen hours of spontaneous speech produced by 64 different speak-
ers. This produces about 75,000 data points covering all vowel
types and many different phonetic contexts. In order to assess
the model and perceptual salience of clarity variation materials
were selected from this data and presented to human subjects. The
perceptual experiment investigated the extent the model predicted
human responses and the extent subjects could reliably perceive
the spectral variation in different vowels.

3. PERCEPTUAL EXPERIMENT

3.1. Method

32 subjects (23 British English native speakers of which 12 had
a Southern Britishaccent, 7 were Northern British, 3 were Scot-
tish and 1 Irish together with 4 North American English native
speakers and 5 non-native speakers) were played 90 vowels ex-
cerpted from spontaneous speech together with 90 matched fillers
taken from citation speech and asked to rate their ’goodness’ us-
ing magnitude estimation. Magnitude estimation is a technique
often used in psychophysics to validate and construct scales of
physical sensations. The main advantage of magnitude estima-
tion over more traditional rating scales or visual analogue scales
is that the scale used to measure subjects response does not affect
the response. In magnitude estimation a subject decides on their
own scale based on the first stimulus and uses that first response
as a yardstick to measure all others. In order to compare results
between subjects the responses are log transformed. For a clear
and concise introduction to magnitude estimation see [8].

The vowels used all had durations between 90-110ms, had their
amplitude normalised and were excerpted from the HCRC Map
Corpus [1]. Segmentation was achieved by combining word seg-
mentation done by hand with phonemic auto-segmentation car-
ried out using the HTK toolkit [13] and hand corrected entries
from the CELEX online dictionary [4]. The vowels represented 3
vowel types (one from each corner of the vowel triangle), 3 lev-
els of clarity (high, medium, low) as calculated using the model
described. Each cell of ten stimuli had a matching set of ten ci-
tation fillers with similar clarity scores, durations and speakers.
The speakers who produced each of the ten stimuli in each cell



were different and split equally between male and female speak-
ers. Where possible the same speakers were used in each cell.

Clarity groups were decided on the basis of the distribution of
the clarity score of all 90-110ms vowels. The mean of the log
likelihood clarity score of the vowels was -16.912. Any vowels
with a clarity of less than -16.75 where regarded as low clarity
items. Items above -16.5 were divided into two further groups,
those with a clarity between -16.5 and -15.5 which were regarded
as medium and those with a clarity of greater then -15.25 which
were regarded as high clarity items. The standard deviation of the
clarity score was 2.154.

Each subject was first given a practise exercise in Magnitude Es-
timation training them to use this technique to judge line lengths.
They then listened to some randomly selected sections of sponta-
neous speech produced by Glaswegian Speakers and to some ex-
ample vowels excerpted from this speech. They then carried out
a short practise session judging the vowel quality of 10 vowels
before taking part in the main experiment. In the main experi-
ment they were played 60 randomised examples of each vowel (i
as “ee” in “street”, o as “o” in “gold” and a as “a” in “cat”), they
were given the word the vowel was taken from and asked to judge
how good they thought the vowel sounded. The order of presenta-
tion of vowels was varied amongst subjects in case of an ordering
effect.

Each vowel was presented twice with a 2 second gap between
each presentation and a 4 second gap and a beep between each
vowel. Vowels were blocked into groups of ten and data was cap-
tured using netscape and a web interface.

3.2. Results

The results were analysed as follows:

1. by-subjects ANOVA
2. by-materials ANOVA
3. Linear correlation between clarity as assigned by the statis-

tical model and pooled subject responses
4. Cluster analysis of subjects responses

By-Subjects ANOVA. The by-subjects ANOVA used subject
linguistic background (Native English, Native North American,
Non-Native) as a grouping variable with vowel (i, o, a) and clarity
as calculated by the model (high, medium, low) as crossed vari-
ables.

Surprisingly the linguistic background had no significant effect on
the responses. Subjects from Germany and Poland rated vowels
similarly to Native English speakers. As I will discuss later this
probably has more to do with the basic difficulty of the task than
some underlying similarity in vowel sensitivity.

Similarly vowel type alone had no significant effect on results
although there was a vowel/clarity interaction(F (4; 96) =
4:15; p < 0:005). However clarity group(F (2; 48) =
20:75; p < 0:001) did have a significant effect on the subjects
responses. The means of the responses for spontaneous speech
within each clarity group were as follows:

By-Subjects Responses
Clarity Group High Med Low

Geometric Mean 0.883 0.799 0.777

This supported the hypothesis that the clarity model was mod-
elling subjects response to some extent. Low, medium and high
clarity groups as decided by the clarity model reflected low,
medium and high responses from subjects.

By-Materials ANOVA. Following the non significant effect of
subjects linguistic background these responses were pooled. In
the by-materials ANOVA sex of speaker, vowel type and clarity
group were used as grouping variables.

The clarity group result persisted in the by-materials analysis
(F (2; 72) = 3:71; p < 0:05). Again the pattern of means sup-
ported the hypothesis:

By-Materials Responses
Clarity Group High Med Low

Geometric Mean 0.69 0.625 0.582

The difference in significance between by-subject and by-
materials analyses suggests there is too much variance unac-
counted for in the materials. This led to a re-examination of the
clarity score. Noise is unquestionably in the system. This noise
will produce spurious F1/F2. The likely effect of this is to pro-
duce very low clarity scores (i.e. nowhere near the distribution of
the speakers vowels). Thus very low clarity scores (more than 2
standard deviations from the mean) should be treated with suspi-
cion.

Linear correlation between clarity as assigned by the statisti-
cal model and pooled subject responses.Before carrying out a
linear correlation between pooled subjects response and raw clar-
ity score in terms of log likelihood it was decided to remove low
valued outliers (that is with a value lower than 2 standard devi-
ations from the mean.) Firstly because of suspicions concerning
their validity and secondly because of the large effect outliers can
have on linear correlation tests. This removed 7 data points from
the 90 vowels taken from spontaneous speech. The result was a
weak but significant correlation(r = 0:313; p < 0:005).

The model appears to predict only about 10% of the subjects re-
sponses.

Cluster analysis of subjects responsesIn order to investigate
agreement between subjects a cluster analysis was carried out on
subjects responses. The clustering was carried out using corre-
lation as a distance measurement and maximum similarity (mini-
mum distance), single linkage to combine clusters [5]. No group-
ing effect was apparent. Agreement between subjects varied con-
siderably. The average correlation between any two subjects is
quite low (r = 0:33) but the significance of the agreement be-
tween subjects is generally high (79% with ap <= 0:05) be-
tween all pairwise comparisons. Bearing in mind the difficulty
faced by subjects when carrying out the task of rating vowel
goodness the statistical model performs comparatively well(r =
0:313; p < 0:005).



4. DISCUSSION

Can subjects reliably judge the clarity of vowels excerpted from
spontaneous speech without duration cues? The answer is yes
but it’s hard. They reliably agree with each other about 10% of
the time. Can a statistical model [3] reliably predict the subjects’
response to such vowels? Again the answer appears to be yes but,
again, it’s quite hard only predicting about 10% of the subjects
responses. Basically the model is roughly as good – or bad – a
predictor of any one listener’s judgement as any other listener’s
judgement is.

Vowel quality in spontaneous speech does contribute to subjects’
perception of vowel ’goodness’. However the failure of subjects
to agree on individual vowels suggests that this contribution is
not a strong one. Duration is a primary factor. Of the 170,000
vowels segmented in the HCRC Map task nearly 100,000 are ei-
ther too short to measure the spectral target reliably (less 40ms)
or were unvoiced. The materials we used in our perceptual ex-
periment did not reflect these short vowels or devoiced vowels.
In contrast to materials generated in ’clear speech’ experiments,
where the scale of vowel articulation varies from clear to very
clear, in spontaneous speech the spectral quality of vowels often
varies from poor to very poor. Perhaps in these conditions the dif-
ficulty in relying on spectral cues alone to perceive vowel quality
leads to more reliance on segmental duration. However, in order
to establish this, further experiments varying the duration of the
segments used would be required.

Finally a clear problem with the approach taken in the modelling
strategy is the fact that phonetic context is not taken into account.
Rather than the model assigning a clarity score based solely on
the F1/F2 targets of the vowel it might be more productive to as-
sign this score on these values given the pre and/or post segmen-
tal context. However modelling these factors effectively using
the statistical approach described here would require substantial
quantities of controlled citation data fromeach speaker. It is also
important to bear in mind that other acoustic factors such as spec-
tral tilt, f0 and amplitude might also make an important contri-
bution to any judgement of a vowel’s ’goodness’ in spontaneous
speech. Although the model could be altered to take such factors
into account it is not entirely clear how such factors should be
automatically measured and incorporated.

To conclude I would argue that a corpus approach to the analysis
such phonetic factors offers a useful contrast to hand measured
laboratory studies. Large corpora of spontaneous speech are now
available making such an approach tractable as well as produc-
ing interesting scientific results to support or confound previous
findings in laboratory phonetics.
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