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ABSTRACT exploiting different properties of the training data. Sub-tasks
can often be solved in a simpler fashion with less resources.
Multinet is a connectionist architecture designed for certaihherefore, (1) and (2) are direct consequences of the application
difficult multi-class pattern classification tasks. These aréf either MNNs or ensembles. The exploitation of the different
characterised by very large input featuracgs, rendering a Properties of the training data is a particular characteristic of the
monolithic classifier impractical. The architecture consists of @hsemble solution. Classifiers are applied to different parts of
layer with at least one primary ‘detector’ for each clasghe same problem and a solution is derived from the
followed by a combining net which estimates the posterigiombination of the individual responses of each classifier.

probabilities for all classes. Typically primary detectors onl ) . .
input a subset of the input features. Thus the architectLﬁ@e Multinet architecture [10,11] is a layer-structured neural net

decomposes classification in two ways: by class and chitecture which can function as an ensemble or MNN. The
factoring of the input space dimensions. Multinet incorporatdB8&jor novelty of this architecture is thgt th_e classification task is
the ideas of Modular Neural Networks and Ensembles. In thi€defined as a result of the modularisation: separate networks
paper we investigate the use of Multinet on standard speecd! Use different input feature vectors as appropriate to their
recognition tasks and present results for phoneme recognition @ssification sub-task. The main focus of this paper is to present
TIMIT and word recognition on RM. We show Multinet's results for the Multinet architecture funptlonlng as an MNN. We
performance is comparable with standard HMM and hybri@ompare phoneme and Word_recognltlon results on the TIMIT
HMM-NN systems that we run on the same tasks. The value affgdd RM speech corpora against those produced by a standard
potential of the Multinet approach is shown by detailing?MM and a standard HMM-NN hybrid system.

successive improvements to the Multinet system which are

easily obtained because of thednlarity of the architecture. 2. THE MULTINET ARCHITECTURE

1. INTRODUCTION A direct modularisation of the standard HMM-NN hybrid
) system would consist of a layer of small networks, each

Current commercial ASR systems use Hidden Markov Modefsoproximating the posterior probability pf its class, on the same
(HMMs). They are a powerful framework for speecHNPut space. However we would like to go further and
recognition but depend on strong assumptions about the spe8@RCialise each net to its individual task, including supplying it
process [1]. Hybrid HMM-NN systems make weakeMith ta_llor_ed input data._ This generalisation of the
assumptions and combine the temporal modelling of HMMECdularisation concept requires us to add another layer to the
with the use of Neural Networks as probability estimators [2ﬁ|mple archltgcture. Thls is because the |nd|V|duaI detectors are
For example, Renals et al. [2] used an MLP probabilit)© Ionger Qstlmators in the same space. Thel_r.(.)utputs must be
estimator with 234 input nodes, 1000 hidden nodes and sgmblned in order to p(oduce posterior probabﬂme; on the total
outputs. Training monolithic NNs of this size can requirdPut Space. The resulting architecture is shown in figure 1.

several days. This can severely hamper the research and
development of such systems, and has implications for the

practicality of the approach in, for example, speaker adaptation. b dl Jow/

Several architectures have been proposed to reduce network f f *
training times (as well as to improve classification). Neural net
ensembles [3,4], for example, have been successfully applied to
a number of classification problems, including speech net
recognition [5,6]. They are a combination of different classifiers T T ?

posterior

applied to the same task. Based on the principle of divide-and-

conquer, Modular Neural Networks (MNNs) [7,8,9] on the other

hand, aim at combining the results of different classifiers primary detectors
applied to different sub-tasks. As well as speeding up training ????? ?$???

these architectures can also (1) simplify the modelling process,

(2) produce solutions that would have been impractical or

infeasible with a monolithic net and (3) produce better results by
Figure 1: The Multinet Architecture.




2.1The Primary Detectors 3. PHONEME RECOGNITION

Primary detectors may be trained one-at-a-time to discriminafée have evaluated the Multinet architecture on both TIMIT and
their class from all other classes. Unlike the monolithic neRM speech corpora. We collapse the 61 TIMIT phone labels
training a primary detector is a simple task as each detector jiugb 42. These differ only slightly from the standard 39 phone
needs to learn the distribution of its class against theet [13] as /zh/ is not collapsed into /sh/ and /aa/ is also
background. Its resources are dedicated and can be preciselparated from /ao/. Our front-end analysis extracts 16 mel-
tuned to need. We avoid awkward problems of cross-talk afréquency cepstral coefficients (MFCCs), including energy, plus
resource hogging which can occur in a multiple-output6 AMFCCs from each 16 ms of speech, at an 8ms frame rate.
classifier. For certain detectors we may also reduce the number

of inputs, as sounds that are essentially stationary can Bee baseline Multinet system has 42 primary detectors, one for
identified with less feature vectors. As a result of theseach phoneme. The detectors are all MLPs with 20 hidden
simplifications, the total architecture requires fewer parametengdes, except for the diphthong detectors where 50 hidden
and trains faster. Further simplification of the modelling proces®des are used. The choices of input data were based on a rough
can be achieved by excluding some of the out-class data whedgement of the different requirements of the phone classes. In

training particular primary detectors. order to minimise the inputs and hence the size of individual
detectors, we avoid, as much as possible, the use of many input
2.2The Posterior Net frames and the delta information. The posterior net is an MLP

with 42 inputs and outputs and 100 hidden nodes.

The posterior net has as many outputs as phone classes. It is o
connected to all the outputs of the primary detectors and train€#0 other systems are also evaluated for comparison:

in a separate exercise with the primary detectors held fixed. It . . .

task is to estimate the posterior probabilities of all phones on t A stanglard context-mdependent continuous-density HMM
complete input feature ape and can be viewed as a SuprasySte_m' with three_-state left t_o r!ght models and one skip
Bayesian [12] net which treats the opinions of other classifief@nsition. The plosives and affncatlves_, hawever, are m_odelled
as data. The task of the posterior net is closely related to the W4in two states. For each state, 8 njlxtu_res_of gaussians are
the primary detectors were trained. If all primary detectors shaf mP“_ted in order to model the emission likelihoods for the 32
the same input size, then they approximate the actual posterigiefficients (16 MFCCs + 18MFCCs).

probability for each phoneme and the posterior net has no ro ) A hybrid HMM-NN system where the NN architecture is an

However, if the primary detectors are trained on differe ’ . -
subsets of the input data, or with different pre-processi LP with 288 inputs (9 frames of 32 coefficients each), 1000
gden nodes and 42 outputs.

techniques then the role of the posterior net becomes m

important, because the individual probability estimations are "R} order to observe the behaviour of the recognisers for each

the actual posterior probabilities. An interesting case is ”Ff’ass, we performed phoneme recognition against the TIMIT

training of the primary detectors for each V°"Ye'- V°We's arﬁ1ark-up. Table 1 shows these results along with results for the
almost steady sounds and do not need extra information abg'ﬂ)thinx system [14] on the same task

time development. However they are distinguished from the
diphthongs exactly because of this information. In other words,
they can be distinguished in the higher-dimensional space of
multiple frames and with delta information, but in the space of

. - . . . HMM(baseline) 59.7

reduced dimensions, diphthongs project confusingly on top of AMM-NN(basel 68.2
them. By taking the diphthongs out of the training set of the “NN(base 'r_‘e) -

MULTINET (baseline) 61.7

vowels, we create a representation for the vowels in this space

of reduced dimensions, but we have also changed the balance of MULTINET (improveg 62.8

the original space. The posterior net corrects the balance by

appropriate positive and negative scaling of the primarable 1: Phoneme recognition on TIMIT mark-up.

detectors. So, for example, the positive indication of a

diphthong inhibits the response of the posterior net for a vowel.

) ) . ) . Although the overall phoneme recognition performance is

The posterior net also corrects any distortions in the Priogpmparable to the HMM system, we showed in [10] that the

which may have been introduced by biased selections of data fgfitinet underperforms on nasals, semi-vowels and diphthongs.

training primary detectors. In [10] we have shown that thg compensates by being better at plosives and silence. This is an

posterior net can successfully combine the estimations gfjication that some of our original decisions on the number of

primary detectors applied to different analysis time-scales afgh,t frames to present to certain primary detectors, were not

on biased d.ata. Prpwded the primary detectors do not acwaéﬂypropriate. Fortunately, one can retrain some of the primary

discardany information from the total input feature space, thepjeiectors very quickly and re-apply them even to the same

given _sufficient resources, _the posterior net can deliver go%sterior net. Changing the number of input frames for the

posterior probability estimations. nasals and including deltas for the semi-vowels improved the
phoneme recognition. No doubt further improvements would be
possible.




4. EXPERIMENTS ON RM posterior net with 100 hidden nodes is employed in order to
provide a final posterior probability estimation for each
Although phoneme recognition is a good measure of the quallioneme.
of a system, a full evaluation comes with word recognition

results. In order to perform a fair comparison with the two othe fliRaSS) Baseline V1 V2 V3

methods (HMMs and HMM-NN) we built our own decoder so | Plosive 7 7+A 7+A 7+A
that the three systems would have the same characteristics. Théricative 7 7 7+A 7+A
decoder performs a standard Viterbi beam search over the spac&owel 7 7 7 7+A
of likelihoods (HMMs) or scaled likelihoods (hybrid and | Nasal 7 7 7+A 7+A
Multinet systems) and ta_lkes into account a favonological Diphthong 9A 9A oA 9A
rules (for instance, geminate deletion). It also presents so €Semi-Vowel 7 7iA 7iA 7iA
flexibility at the lexical level where alternative or optional paths

are allowed. Table 3: Primary detector inputs by broad class

Our context-independent continuous-density HMM system has
the same structure as applied to phoneme recognition on TIMNersion 1 is intended to show the benefit of using additional
It is of special importance as it produces the alignment useddelta representation on plosives and semi-vowels. Version 2 is
train both the standard HMM-NN hybrid system and théntended to show the role of the posterior net as the primary
Multinet architecture. It is also our reference system and foetectors for vowels are not trained against the diphthongs. Its
this reason was compared to a well-known context-independeasult should be very close to the one produced by Version 3.
system: the Sphinx system [15]. However the comparison Knally, Version 3 is included to show the benefit of employing
complex: Sphinx is a discrete density system which employsdeélta information on every phoneme. As all detectors share
states per phoneme. It is also presented in several versicsost the same inputage in this version, no posterior net is
Table 2 shows the results of word recognition applied on tlemployed. Table 4 presents the progress of the word accuracy
Sphinx88 test-set of the RM corpus, using a word pair grammaates across the Multinet versions and the results of the HMM
for the HMM systems. Sphinx3C is an attempt to improve thend HMM-NN methods. No assessment is carried out on
discrete density model by applying more than one codebookitalividual phoneme resources such as number of hidden nodes.
the modelling process and therefore is closer to the continuol®ugh estimations indicated that the numbers previously stated
density model we have employed. However, we haven(20 hidden nodes for input spacevaitit delta information and
devoted much effort to improving our HMM baseline system a#0-50 otherwise) are a reasonable trade-off between training
our major goal is to provide equal conditions of comparison fdime and classification capability. Also, the resources of the
the three different methods. posterior net are limited to 100 hidden nodes and further
analysis is also necessary to assess the influence of this

SYSTEM WORD ACCURACY parameter on the overall word accuracy.

Sphinx (baseline) 58.1%

HMM (baseline) 70.7%

Sphinx 1C 76.1% MULTINET Baseline 55.3%

Sphinx 3C 81.1% MULTINET V1 58.8%

MULTINET V2 63.0%

Table 2: Comparison of HMM baseline system and the Sphinx MULTINET V3 65.6%
versions. 1C and 3C stand for one and three codebooks ["STANDARD HMM-NN 68.8%
respectively. STANDARD HMM 70.7%

The HMM-NN hybrid system also has the same structure
used on the phoneme recognition experiment and delivers

word accuracy of 68.8%. It is important to notice, however, thatersion 1 presents an improvement over the baseline system,
the learning process was interrupted after theeoch due to however, the word accuracy of 58.8% is only slightly better than
the overall long training time. We believe that a bettefhe paseline 55.3% rate. Including the delta information on all
recognition performance could have been achieved if thgher phonemes apart from the vowels, improves the word
training had gone further. accuracy in version 2 to 63.0%. This result is close to the word

accuracy of the final version (65.6%) but not yet close to our

Four versions of the Multinet system are analysed. Table 3 <ajine HMM and HMM-NN results. The difference in word
presents the number of input frames for each phoneme in €@y, racy between the final version of the Multinet and Version

broad class across the versions. The number of hidden nodes 55y e due to insufficient free parameters in the posterior net
set to 20 when no delta information is supplied to the classifigf el each class. Further investigations will be carried out in
and 40 or 50 otherwise. The diphthongs are modelled the sagier 1o determine the appropriate number of hidden nodes of
way across all versions as their nature demands an iNRHL posterior net. The difference between the final version of the
representation that takes time development into account. Alggjtinet system and the two other baseline methods may also be

silence is modelled the same way across the versions with/y|ained by the lack of resources provided to each individual
frames and no delta information. primary detector.

s .
gble 4: Word accuracies for the systems

Apart from Version 3, the other two versions exclude the
diphthongs when training each vowel detector. Therefore a



5. CONCLUSION 6.

Multinet is a new hybrid HMM-NN architecture that can
function as a Modular Neural Network (MNN) or Ensemble.
We have been investigating Multinet as a MNN and havé
illustrated how this architecture can help us to attack
performance deficiencies in a piecemeal fashion. We have yet to
really exploit the possibilities inherent in the individual design
of primary detectors. This is an extra flexibility that the
architecture provides, but which necessarily requires more
development effort. This comes with the power to decide the
resources as well as pre-processing on an individual phoneme
basis. This contrasts with the standard HMM-NN hybrid
approach, where only the total resources are set a priori gnd
there is no control over the allocation of resources to individual
classes. The allocation is implicitly performed during training
and is not necessarily optimal. In particular infrequent classes
may well be starved of net resources. 10.

A monolithic phone-classifier MLP can take up to 336 hours to
train (24 hours per iteration). Any re-design requires complete
retraining. A complete Multinet architecture takes comparablg;
or less time to train on one computer, according to the detectors

used. Retraining one detector, however, takes less than 9 hours.

We are also able to train individual detectors on separate
computers. With enough computers we could train all the

primary detectors in 9 hours by exploiting this trainingi2.
parallelism. Training the posterior net adds about 10 hours to
this time. At the moment we can use 3 PCs for training, and thus
are able to divide our training time by 3.
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