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ABSTRACT

Multinet is a connectionist architecture designed for certain
difficult multi-class pattern classification tasks. These are
characterised by very large input feature spaces, rendering a
monolithic classifier impractical.  The architecture consists of a
layer with at least one primary ‘detector’ for each class,
followed by a combining net which estimates the posterior
probabilities for all classes. Typically primary detectors only
input a subset of the input features. Thus the architecture
decomposes classification in two ways: by class and by
factoring of the input space dimensions. Multinet incorporates
the ideas of Modular Neural Networks and Ensembles. In this
paper we investigate the use of Multinet on standard speech
recognition tasks and present results for phoneme recognition on
TIMIT and word recognition on RM. We show Multinet’s
performance is comparable with standard HMM and hybrid
HMM-NN systems that we run on the same tasks. The value and
potential of the Multinet approach is shown by detailing
successive improvements to the Multinet system which are
easily obtained because of the modularity of the architecture.

1. INTRODUCTION

Current commercial ASR systems use Hidden Markov Models
(HMMs). They are a powerful framework for speech
recognition but depend on strong assumptions about the speech
process [1]. Hybrid HMM-NN systems make weaker
assumptions and combine the temporal modelling of HMMs
with the use of Neural Networks as probability estimators [2].
For example, Renals et al. [2] used an MLP probability
estimator with 234 input nodes, 1000 hidden nodes and 69
outputs. Training monolithic NNs of this size can require
several days. This can severely hamper the research and
development of such systems, and has implications for the
practicality of the approach in, for example, speaker adaptation.

Several architectures have been proposed to reduce network
training times (as well as to improve classification). Neural net
ensembles [3,4], for example, have been successfully applied to
a number of classification problems, including speech
recognition [5,6]. They are a combination of different classifiers
applied to the same task. Based on the principle of divide-and-
conquer, Modular Neural Networks (MNNs) [7,8,9] on the other
hand, aim at combining the results of different classifiers
applied to different sub-tasks. As well as speeding up training
these architectures can also (1) simplify the modelling process,
(2) produce solutions that would have been impractical or
infeasible with a monolithic net and (3) produce better results by

exploiting different properties of the training data.  Sub-tasks
can often be solved in a simpler fashion with less resources.
Therefore, (1) and (2) are direct consequences of the application
of either MNNs or ensembles. The exploitation of the different
properties of the training data is a particular characteristic of the
ensemble solution. Classifiers are applied to different parts of
the same problem and a solution is derived from the
combination of the individual responses of each classifier.

The Multinet architecture [10,11] is a layer-structured neural net
architecture which can function as an ensemble or MNN. The
major novelty of this architecture is that the classification task is
redefined as a result of the modularisation: separate networks
can use different input feature vectors as appropriate to their
classification sub-task. The main focus of this paper is to present
results for the Multinet architecture functioning as an MNN. We
compare phoneme and word recognition results on the TIMIT
and RM speech corpora against those produced by a standard
HMM and a standard HMM-NN hybrid system.

2. THE MULTINET ARCHITECTURE

A direct modularisation of the standard HMM-NN hybrid
system would consist of a layer of small networks, each
approximating the posterior probability of its class, on the same
input space.  However we would like to go further and
specialise each net to its individual task, including supplying it
with tailored input data. This generalisation of the
modularisation concept requires us to add another layer to the
simple architecture. This is because the individual detectors are
no longer estimators in the same space. Their outputs must be
combined in order to produce posterior probabilities on the total
input space. The resulting architecture is shown in figure 1.

                            /b/      /d/               /ow/

                                        posterior

                                           net

                                                       ...                                                             

                                                              primary detectors

Figure 1:  The Multinet Architecture.



2.1 The Primary Detectors

Primary detectors may be trained one-at-a-time to discriminate
their class from all other classes. Unlike the monolithic net,
training a primary detector is a simple task as each detector just
needs to learn the distribution of its class against the
background. Its resources are dedicated and can be precisely
tuned to need. We avoid awkward problems of cross-talk and
resource hogging which can occur in a multiple-output
classifier. For certain detectors we may also reduce the number
of inputs, as sounds that are essentially stationary can be
identified with less feature vectors. As a result of these
simplifications, the total architecture requires fewer parameters
and trains faster. Further simplification of the modelling process
can be achieved by excluding some of the out-class data when
training particular primary detectors.

2.2 The Posterior Net

The posterior net has as many outputs as phone classes. It is
connected to all the outputs of the primary detectors and trained
in a separate exercise with the primary detectors held fixed. Its
task is to estimate the posterior probabilities of all phones on the
complete input feature space and can be viewed as a Supra-
Bayesian [12] net which treats the opinions of other classifiers
as data. The task of the posterior net is closely related to the way
the primary detectors were trained. If all primary detectors share
the same input space, then they approximate the actual posterior
probability for each phoneme and the posterior net has no role.
However, if the primary detectors are trained on different
subsets of the input data, or with different pre-processing
techniques then the role of the posterior net becomes more
important, because the individual probability estimations are not
the actual posterior probabilities. An interesting case is the
training of  the primary detectors for each vowel.  Vowels are
almost steady sounds and do not need extra information about
time development. However they are distinguished from the
diphthongs exactly because of this information. In other words,
they can be distinguished in the higher-dimensional space of
multiple frames and with delta information, but in the space of
reduced dimensions, diphthongs project confusingly on top of
them. By taking the diphthongs out of the training set of the
vowels, we create a representation for the vowels in this space
of reduced dimensions, but we have also changed the balance of
the original space. The posterior net corrects the balance by
appropriate positive and negative scaling of the primary
detectors.  So, for example, the positive indication of a
diphthong inhibits the response of the posterior net for a vowel.

The posterior net also corrects any distortions in the priors
which may have been introduced by biased selections of data for
training primary detectors. In [10] we have shown that the
posterior net can successfully combine the estimations of
primary detectors applied to different analysis time-scales and
on biased data.  Provided the primary detectors do not actually
discard any information from the total input feature space, then,
given sufficient resources, the posterior net can deliver good
posterior probability estimations.

3. PHONEME RECOGNITION

We have evaluated the Multinet architecture on both TIMIT and
RM speech corpora. We collapse the 61 TIMIT phone labels
into 42. These differ only slightly from the standard 39 phone
set [13] as /zh/ is not collapsed into /sh/ and /aa/ is also
separated from /ao/. Our front-end analysis extracts 16 mel-
frequency cepstral coefficients (MFCCs), including energy, plus
16 'MFCCs from each 16 ms of speech, at an 8ms frame rate.

The baseline Multinet system has 42 primary detectors, one for
each phoneme. The detectors are all MLPs with 20 hidden
nodes, except for the diphthong detectors where 50 hidden
nodes are used. The choices of input data were based on a rough
judgement of the different requirements of the phone classes. In
order to minimise the inputs and hence the size of individual
detectors, we avoid, as much as possible, the use of many input
frames and the delta information. The posterior net is an MLP
with 42 inputs and outputs and 100 hidden nodes.

Two other systems are also evaluated for comparison:

(1) A standard context-independent continuous-density HMM
system, with three-state left to right models and one skip
transition. The plosives and affricatives, however, are modelled
with two states. For each state, 8 mixtures of gaussians are
computed in order to model the emission likelihoods for the 32
coefficients (16 MFCCs + 16 'MFCCs).

(2) A hybrid HMM-NN system where the NN architecture is an
MLP with 288 inputs (9 frames of 32 coefficients each), 1000
hidden nodes and 42 outputs.

In order to observe the behaviour of the recognisers for each
class, we performed phoneme recognition against the TIMIT
mark-up. Table 1 shows these results along with results for the
Sphinx system [14] on the same task.

SYSTEM % correct
Sphinx HMM 58.7

HMM(baseline ) 59.7
 HMM-NN(baseline ) 68.2

MULTINET(baseline ) 61.7

MULTINET (improved) 62.8

Table 1: Phoneme recognition on TIMIT mark-up.

Although the overall phoneme recognition performance is
comparable to the HMM system, we showed in [10] that the
Multinet underperforms on nasals, semi-vowels and diphthongs.
It compensates by being better at plosives and silence. This is an
indication that some of our original decisions on the number of
input frames to present to certain primary detectors, were not
appropriate.  Fortunately, one can retrain some of the primary
detectors very quickly and re-apply them even to the same
posterior net. Changing the number of input frames for the
nasals and including deltas for the semi-vowels improved the
phoneme recognition. No doubt further improvements would be
possible.



4. EXPERIMENTS ON RM

Although phoneme recognition is a good measure of the quality
of a system, a full evaluation comes with word recognition
results. In order to perform a fair comparison with the two other
methods (HMMs and HMM-NN) we built our own decoder so
that the three systems would have the same characteristics. The
decoder performs a standard Viterbi beam search over the space
of likelihoods (HMMs) or scaled likelihoods (hybrid and
Multinet systems) and takes into account a few phonological
rules (for instance, geminate deletion). It also presents some
flexibility at the lexical level where alternative or optional paths
are allowed.

Our context-independent continuous-density HMM system has
the same structure as applied to phoneme recognition on TIMIT.
It is of special importance as it produces the alignment used to
train both the standard HMM-NN hybrid system and the
Multinet architecture.  It is also our reference system and for
this reason was compared to a well-known context-independent
system: the Sphinx system [15]. However the comparison is
complex: Sphinx is a discrete density system which employs 7
states per phoneme. It is also presented in several versions.
Table 2 shows the results of word recognition applied on the
Sphinx88 test-set of the RM corpus, using a word pair grammar,
for the HMM systems. Sphinx3C is an attempt to improve the
discrete density model by applying more than one codebook to
the modelling process and therefore is closer to the continuous-
density model we have employed.  However, we haven’t
devoted much effort to improving our HMM baseline system as
our major goal is to provide equal conditions of comparison for
the three different methods.

SYSTEM WORD ACCURACY
Sphinx (baseline) 58.1%
HMM(baseline) 70.7%
Sphinx 1C 76.1%
Sphinx 3C 81.1%

 Table 2: Comparison of HMM baseline system and the Sphinx
versions. 1C and 3C stand for one and three codebooks
respectively.

The HMM-NN hybrid system also has the same structure as
used on the phoneme recognition experiment and delivers a
word accuracy of 68.8%. It is important to notice, however, that
the learning process was interrupted after the 8th epoch due to
the overall long training time. We believe that a better
recognition performance could have been achieved if the
training had gone further.

Four versions of the Multinet system are analysed. Table 3
presents the number of input frames for each phoneme in each
broad class across the versions. The number of hidden nodes is
set to 20 when no delta information is supplied to the classifier
and 40 or 50 otherwise. The diphthongs are modelled the same
way across all versions as their nature demands an input
representation that takes time development into account. Also
silence is modelled the same way across the versions with 7
frames and no delta information.

 Apart from Version 3, the other two versions exclude the
diphthongs when training each vowel detector. Therefore a

posterior net with 100 hidden nodes is employed in order to
provide a final posterior probability estimation for each
phoneme.

CLASS Baseline V1 V2 V3
Plosive 7 7+' 7+' 7+'
Fricative 7 7 7+' 7+'
Vowel 7 7 7 7+'
Nasal 7 7 7+' 7+'
Diphthong 9+' 9+' 9+' 9+'
Semi-Vowel 7 7+' 7+' 7+'

Table 3: Primary detector inputs by broad class

Version 1 is intended to show the benefit of using additional
delta representation on plosives and semi-vowels.  Version 2 is
intended to show the role of the posterior net as the primary
detectors for vowels are not trained against the diphthongs. Its
result should be very close to the one produced by Version 3.
Finally, Version 3 is included to show the benefit of employing
delta information on every phoneme. As all detectors share
almost the same input space in this version, no posterior net is
employed. Table 4 presents the progress of the word accuracy
rates across the Multinet versions and the results of the HMM
and HMM-NN methods.  No assessment is carried out on
individual phoneme resources such as number of hidden nodes.
Rough estimations indicated that the numbers  previously stated
(20 hidden nodes for input space without delta information and
40-50 otherwise) are a reasonable trade-off between training
time and classification capability. Also, the resources of the
posterior net are limited to 100 hidden nodes and further
analysis is also necessary to assess the influence of this
parameter on the overall word accuracy.

SYSTEM WORD ACCURACY
MULTINET Baseline 55.3%
MULTINET V1 58.8%
MULTINET V2 63.0%
MULTINET V3 65.6%
STANDARD HMM-NN 68.8%
STANDARD HMM 70.7%

Table 4: Word accuracies for the systems

Version 1 presents an improvement over the baseline system,
however, the word accuracy of 58.8% is only slightly better than
the baseline 55.3% rate. Including the delta information on all
other phonemes apart from the vowels, improves the word
accuracy in version 2 to 63.0%.  This result is close to the word
accuracy of the final version (65.6%) but not yet close to our
baseline HMM and HMM-NN results. The difference in word
accuracy between the final version of the Multinet and Version
2 may be due to insufficient free parameters in the posterior net
to model each class. Further investigations will be carried out in
order to determine the appropriate number of hidden nodes of
the posterior net. The difference between the final version of the
Multinet system and the two other baseline methods may also be
explained by the lack of resources provided to each individual
primary detector.



5. CONCLUSION

Multinet is a new hybrid HMM-NN architecture that can
function as a Modular Neural Network (MNN) or Ensemble.
We have been investigating Multinet as a MNN and have
illustrated how this architecture can help us to attack
performance deficiencies in a piecemeal fashion. We have yet to
really exploit the possibilities inherent in the individual design
of primary detectors. This is an extra flexibility that the
architecture provides, but which necessarily requires more
development effort.  This comes with the power to decide the
resources as well as pre-processing on an individual phoneme
basis. This contrasts with the standard HMM-NN hybrid
approach, where only the total resources are set a priori and
there is no control over the allocation of resources to individual
classes. The allocation is implicitly performed during training
and is not necessarily optimal. In particular infrequent classes
may well be starved of net resources.

A monolithic phone-classifier MLP can take up to 336 hours to
train (24 hours per iteration). Any re-design requires complete
retraining. A complete Multinet architecture takes comparable
or less time to train on one computer, according to the detectors
used. Retraining one detector, however, takes less than 9 hours.
We are also able to train individual detectors on separate
computers. With enough computers we could train all the
primary detectors in 9 hours by exploiting this training
parallelism. Training the posterior net adds about 10 hours to
this time. At the moment we can use 3 PCs for training, and thus
are able to divide our training time by 3.
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