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ABSTRACT

A fast dgorithmfor left-to-right HMM decoding is pro-
posed in this paper. The agorithmis developed based on a
sequential detection schemewhichisasymptotically optimal
in the sense of detecting a possible change in distributionas
reliably and quickly as possible. The scheme is extended
to HMM decoding in determining the state segmentations
for likelihood or other score computations. As a sequentia
scheme, it can determine a state boundary in a few time
steps after it occurs. The examples in this paper show that
the proposed algorithmis5 to 9 timesfaster than the Viterbi
algorithm while it till can provide the same or similar de-
coding results. The proposed agorithm can be applied to
speaker recognition, audio segmentation, voice/silence de-
tection, and many other applications, where an assumption
of theagorithmisusually satisfied.

1. INTRODUCTION

Hidden Markov Modd (HMM) has been widely used in
speaker and speech recognitions. In order to determine
HMM state ssgmentations or compute likelihood scores, a
decoding algorithm is needed. The agorithm is important
sinceit takesthemajority of the computationin applications.
A fast decoding algorithm not only means fast response for
recognition but aso provides a better performance when
computational resource and time are limited. For example,
in speaker verification, afast decoding al gorithm means fast
response, and more users and channels can be supported
given the same, limited hardware.

The Viterbi algorithm is the prevalent HMM decoding
algorithm. The concept of the Viterbi algorithm was from
graph and network theory, and the HMM decoding problem
was solved as the shortest-route problem, which has been
well studied, such as Dijkstra salgorithm[1] and many oth-
ers [2]. The Viterbi agorithm [3] provides an optimum
solution to the problem of determining the state segmenta-
tion of an HMM in the sense of maximum likelihood [3, 4].

Asiswell known, HMM isaparametric statistical model
with a set of states which characterize the evolution of a
non-stationary process in speech through a set of short time
stationary events. Within each state, the distribution of the
stochastic processisusually model ed by Gaussian mixtures,
and the distribution changes from state to state sequentially
in aleft-to-right HMM. Following the definition of HMM,
given a sequence of observations, we can determine the
state segmentations by detecting the changes in distribution
sequentially. Inthispaper, weproposean a gorithm based on
a sequential detection scheme which has an asymptotically
optimum property.

Wald [5] introduced the concept of sequentia test and
formulated sequential probabilityratiotest (SPRT). Thetest
was designed to decide between two simple hypotheses se-
quentialy. Given two constants as the upper and the lower
stopping thresholds and the density functions, p; and p, of
two hypotheses, H1 and H, respectively, by observing the
data and computing the accumulated log likelihoodratio se-
quentialy, SPRT can make a decision on either continuing
the observation or stopping the test in accepting Hy or Ho.

Using the sequential test to detect a change in distri-
butions was first proposed by Page [6, 7], for memoryless
processes. Itsasymptotic propertieswere studied by Lorden
[8]. The genera form of the test was proposed by Bansa
[9] and Bansal et a [10]. They aso studied its asymptotic
properties for stationary and ergodic process under some
genera regularity conditions. It has been proved that the
test is asymptotically optimum in the sense that it requires
the minimum expected sample size for decision, subject to
afasealarm congtraint [8, 10, 11].

The Page agorithm needs a pre-determined threshold
value for decision. It may not be so criticd if only the
changes between two density functions needs to be de-
termined, but, for HMM decoding, we have to detect the
changes between many different density functions and the
threshold valuesare usually not available. To solvethe prob-
lem, we proposed an algorithmwhich can make the decision
based on a common threshold value with a time constraint



for different state pairs, instead of using multiplethresholds.

The proposed algorithm is much faster and can provide
the same or similar results as the Viterbi algorithm for the
examples tested in the paper. It is especialy useful for
real -time speaker recognition including speaker verification
and identification [12, 13, 14], where the duration of each
stateislonger enough to meet an assumption of the proposed
algorithm. The sequential agorithmisalso useful to parallel
processing, wherestatelevel scores, e.g. likelihoodor others
[15], can be calculated without waiting to the end of the
decoding.

2. DETECTING A CHANGE IN DISTRIBUTION

Let o,, denote an observation vector at time n, and p1(oy,)
and p2(o,, ) bethedensity functions of well known, distinct,
discrete, and mutually independent stochastic processes. In
the case of HMM decoding, they are the density functionsof
two connected states, e.g. statel and state 2 respectively, and
the observed vector sequenceisinitialy generated in state 1.
Given the observation vector sequence, O = {o,;n > 1},
and the density functions p1(o, ) and pz(o,, ), the objective
isto detect apossiblep; to p, change asrdiably and quickly
as possible. Since the change can be happened at any time,
we need a sequential detection scheme.

To gain insight, a non-sequential detection scheme was
used in [10, 11]. Initiay, the size n of the observation
sequence O isfixed. We assume that the change occurrences
are equally probable, then the p; to p, change occurs right
after thedatapoint o;; 1 < j < n, if and only if
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Although the above scheme can be implemented by a fast
algorithm, a sequential test procedure is till needed and it
can be presented as follows.

Given the data block {o?}?_;, decide in favor of the
change from pj to py, iff

where

When data are observed sequentially, Page proposed an al-
gorithm[6, 7] to decide that p; to p, change has occurred at
thefirst n such that

=3 R0~ min {ZRxoi)} >0 (@

where § > 0 is a pre-determined threshold. A recursive
form for the above sequentia testis

T(OO) = 0 (5
T(o") = max{0,T(c" ™1 + R,(o™)}, (6)

where, p1 to p, changeisoccured at thefirstn if T(0™) > 4.
As pointed by Page [6], the above test breaks up into a
repeated Wal d sequential test with boundariesat (0, 4) anda
zeroinitia score. It isasymptotically optimum in the sense
that it requires the minimum possible expected sample size
for decision, subject to afalse alarm constraint. The related
theorems and proofs can be found in [8] and [10].

The previousstudy wasinterested in detecting the occur-
rence of the change. We are a so need to determinethe point
of the change for likelihood or other score computations.
WhenT'(o™) > &, thelast data point of p; is

f—arglgnl;gn{ZRi(oi)} (7)

In many applications, it is difficult to determine the
threshold value 6. For example, in speech recognition, we
may have over one thousand subword HMM'’s and each
HMM has 3 states. Due to different speakers and different
spoken contents, it is amost impossible to pre-determine
all of the threshold values for every possible combination
of connected states or every possible spesker. To apply
the sequentia scheme in speech applications, we propose a
detection scheme as follows, which does not need to pre-
determine the threshold value, 6, precisely.

Sdlect a time threshold ¢5 > 0. Observe data sequen-
tially, and decide that the p; to p, change occurs, if

n_gztéa (8)
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where ¢ > 0 isa small number or can be just zero as we
used in the examples in this paper, R;(0') is defined asin
Eqg. (3). Thelast point £ of p; can be calculated using Eq.
(7). Here, we assume that the duration of p; isnot lessthan
ts.

An illustration of the proposed scheme is shownin Fig.
1 (a), wheret; in Eq. (8) isatime threshold representing a



time duration, and 6 in Eq. (4) represents a threshold value
of the accumulated log likelihood ratio. It is much easier
to determine ¢5 than é in speech and speaker recognition,
and a common s can be applied to different HMM'’s and
different states. Generally speaking, alarger ¢5 can give a
more reliable change point, but it may delay the decision
and cost more in computation. Also, ts should be equal to
or less than the duration of p,. The examples in this paper
show that the proposed scheme can obtain exactly the same
state segmentations as the Viterbi agorithmwhen¢s > 2.
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Figure 1: The scheme of the proposed decoding algorithm:
(a) the end point detection for state 1, ¢s5; (b) the end point
detectionfor state 2, tg; and (c) thegrid pointsfor p1, p and
p3 computations (dots).

3. THE PROPOSED ALGORITHM FOR HMM
DECODING

We have introduced the scheme of detecting the change
between two stochastic processes. In this session, we apply
the proposed scheme to HMM decoding. We focus our
discussion on the left-to-right HMM since it is the most
popular HMM structure in speech and speaker recognition
[16].

For a left-to-right HMM, multiple state segmentations
can be redlized by repeating the above procedure, i.e, to
determine the changes of density functionsfrom p; of state
1to p, of state 2, from p, to p3, and so on, sequentially. We
use Fig. 1 to illustrate the concept. Fig. 1 (a) shows the
scheme to determine the end point of state 1. The circles
are the accumulated ratio values. Given¢;, Eq. (8) and Eq.

(9) are evaluated at each step sequentialy. Attt = t7, we
havet; —t5s > t; = 2and T(o”) > ¢ > 0. Thus, the end
point of state 1 is¢s. Asshownin Fig. 1 (c), so far, only
p1 and p, are involved in the computation, where each dot
represents one probability computation. The test continues
fromt = tg for state 2 as shown in Fig. 1(b). Followingthe
same procedure as above, the determined end point for state
2istg. It involvesthe computation from¢g to 11 for p, and
pzasshownin Fig. 1 (c).

We notethat the proposed decoding scheme is based on
theassumptionthat the duration of the next state (the number
of frames in the next state) isno less than ¢s. Many appli-
cations, such as speaker verification, speaker identification,
audio segmentation, etc., can normally meet this assump-
tion. When the assumption can not be satisfied as in some
speech recognition examples, further evaluation on the next
statesis necessary. It will be discussed separately.

For the proposed algorithm, the number of additionsin
HMM decoding isin the order of

2[T+ (N = 1)ts] (C+2) = 2C [T+ (N — L)ts] ,

(10)
where €' isthe number of float point operationsat each grid
point for log probability, C' + 2 includes the accumulation
and the ratio computations, N isthe total number of states,
T' isthe total number of frames, and ¢s is the time thresh-
old. A widely used implementation of a full-search Viterbi
algorithm for the left-to-right model needs

NT(C+ 1)+ T~ NTC (12)

additions. Therefore, the speedup of the proposed algorithm
isinthe order of

NT
2[T+ (N = 1)ts]

(12)

4. EXPERIMENTS

Examplel: Thisisaforced decoding problemfrom speaker
verification [12, 13, 14]. In atraining session, a spesker
dependent left-to-right HMM is trained with 14 sates and
each state has 4 Gaussian mixtures for a pass-phrase “ open
sesame’. |n atest session, we heed to decode the given test
utterance into a sequence of states and calculate likelihood
scores. Theinputisasequence of 24 dimensional features of
cepstral and delta-cepstra coefficients derived from a 10th
order LPC analysis over a 30 ms widow updated at 10 ms
intervals. For this example, we have 100 cepstral frames
and the proposed algorithm gives the exactly same result
as the Viterbi dgorithm aslong ast; > 2, wherees = 0.
The computationsin the number of floating point operations
(flops) arelistedin Table 1. The proposed a gorithmisabout
5 times faster than the Viterbi a gorithm.



Table 1: Comparisonson Computation

Viterbi Proposed | Speedup
Algorithm Algorithm
Examplel | 785.5Flops | 151.5Flops 52
Example2 | 29.01 Mflops | 3.05 Mflops 95

Example 2: This example is to verify the proposed al-
gorithm in the case of each state only has a few frames,
eg. 2to 10 framesin one state. Now, the given utterance,
“open sesame’, with 101 frames is decoded into 10 sub-
words (phonemes). Each of the subword HMM has 3 states.
When we do aforced decoding, we concatenate the states of
all thesubwordsas asequence of 30 states. For thisexample,
the proposed algorithm gave the exactly same result as the
Viterbi decoding (¢5 = 2 and ¢ = 0). The computationsfor
the Viterbi and the proposed agorithms are 27.93 and 2.93
Mflops respectively. Therefore, the proposed agorithm has
a speedup of 9.5 approximately, as shown in Table 1.

5. CONCLUSIONS

This paper proposed a sequential decoding & gorithm based
on an asymptotically optimal detection scheme. The algo-
rithmis consistent with the definition of |eft-to-right HMM.
Compared to the Viterbi agorithm for HMM decoding, it
has several advantages, athough it is not an optimal ago-
rithm in the sense of maximum likelihood. Firgt, it is a
sequential algorithm. It can determine a state boundary in
a few time steps after it occurs, which is useful to rea-
time speaker verification, speaker identification, language
identification, audio segmentation, silence/voice detection,
and other applications. Second, it needs less computation.
For example, it can provide faster response or support more
channels for speaker verification when the computational
resourceislimited. Last, theimplementation is easier.

We note that this paper presents a preliminary concept
for a different decoding approach for speech processing. It
still needs further testsbeforeit can be applied to real-world
applications.
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