THE REWARD SERVICE CREATION ENVIRONMENT,
AN OVERVIEW

Tom Brgndsted, Bo Nygaard Bai, Jesper @stergaard Olsen

Center for PersonKommunikation
Fredrik Bajers Vej 7A-5
Institute for Electronic Systems,
Aalborg University
DK-9220, Aalborg &, Denmark
{tb,bai,jo}@cpk.auc.dk

using existing dialogue building tools developed at Vocalis and,
ABSTRACT in parallel, participate as advisers in the design phase of the new

The present paper describes the platform for building spokg#]atfor.m. Thu.s,.the platform ‘?"?S”'beo' in this paper is the result
esign decisions largely initiated by the users (cf. [8], [9]).

language systems being designed and implemented within fPlfed

EU-language engineering project REWARD. The platform
collects and streamlines a set of software tools such that they 2. THE PLATFORM

together constitute the basic modules needed to enable dialogr%% REWARD platform consists of two major software
developers to establish new dialogue applications with onl omponents (Figure 1): (i) The Dialogue Creation Environment
minimal knowledge outside their own field of experience an

. g . i nd (ii) the Runtime System. The Dialogue Creation Environ-
within a minimum amount of time. The system differs fro

h latf h b ent is being built entirely by CPK. The runtime system is
.Ot elr z‘fﬂ or:mz, as nt?n-expert users have been stron imarily being built by Vocalis Ltd., using natural language
Involved in the design phase. technology developed at CPK.

Keywords: spoken language dialogues, non-expert design
tools, resource management, reusability, rapid prototyping
abstraction, and extendibility.

S Level Dial Sub- Syst
1. INTRODUCTION Debug Tool Flow Tool Design Tool | | Response Tool

Dialogue Developer

User

The three year EU-Language Engineering project REWARD
(“Real World Applications of Robust Dialogue” LE1-2632)
addresses the needs of organisations which do business over
telephone (i) to automate certain telephone services usin g
spoken language dialogue technology and (ii) to automate th | Dialogue description & grammars ™
process of creating such services. The project brings togeth i

two technology suppliers, Vocalis Ltd. and CPK (Center for ———{ Dialogue Ma”ager‘NL'Parser |
| Speech and Telephony Interface |

Common Current)| Common

Common
Current sub-

sub-
" ial grammar
d\lﬁ:‘roa?rl;e dialogue library

Dialogue Creation
Environment

System

PersonKkommunikation), along with a group of user
organisations consisting of: (a) The British telemarketing anc
market research organisation Taylor Nelson AGB, (b) the Dutct Figure 1: REWARD Platform architecture.

market research organisation NIPO (Nederlands Instituut voor

de Publieke Opinie en het Marktunderzoek), (c) the Danishhe Dialogue Creation Environment being focussed on in this
business travel agency DanTransport and (d) the SpanifPer provides users with a number of window-based tools

hardware maintenance company MADE (Manufacturing andmplemented in JAVA). The tools allow them to implement,
Development SA) debug, and maintain dialogue systems in a dedicated dialogue

description language and to maintain reusable dialogue
In the spring of 1997, the REWARD project underwent a majoesources. Tools for describing dialogue flows and defining sub
revision prompted by the realisation that a simple merger of tiguages make up the main components of the environment.
technology suppliers' existing tools would not achieve thé .

stated goals of the project in terms of both functionality an 1. Dlalogue flow structure.

ease of use. As a result, CPK was given the primary role gf the peginning of the project, two approaches to flow chart
developing a new suite of dialogue creation tools. These todigsed dialogue design were evaluated. The first one based on
should significantly improve the productivity of a dialoguethe Generic Dialogue System (gds) described in [2] and the
designer and bring down the cost of developing and deployirgecond one on a dialogue building system developed at Vocalis
spoken dialogue teleservices. During the design and implemdrd. As a simple merger of the best sub components of the two
tation of the new tools, the user group should design dialogug¥stems turned out to be unrealisable, the development of an

Run-time

entire new tool, DFT (Dialogue Flow Tool), based on thef frames, each corppending to a sub-dialogue. Frames can be
gained experiences was initiated. nested to any depth.

The DFT is the primary entry point to the Dialogue Creatioft is intended that frames can be used to represent reusable sub-
Environment. Dialogues are described and implemented indéalogues.

graphical environment using directed flow chart structures. The

DFT works with two formalisms for the representation oft- NOdes.

dialogue descriptions: Each node takes a number of parameters and can return a
number of values. Results are passed back to the enclosing
frame after completion of the node’s action. Each returned
2. A textual scripting Dialogue Specification Languagevalue the enclosing frame can chose to ignore the value or
(DSL). assign it to a variable. Additionally, eagbde has an associated
))) __inspector that provides a specialised graphical interface for that
The DFT compiles GPL into the equivalent DSL for execution,, e jar type of node. The inspector is used to bind variables

by the .dialogue manager of the runtime system. The Igrg d values to the node’s parameters. Typical parameters may be
proportion of DSL is taken up with commands corresponding [g

1. A Graphical Programming Language (GPL).

rompts to be played or grammars to be used for recognition
the states of the flow chart. Currently, round fifty command nd pF;rsing Py g g
have been defined including the very basic ones like '
recognising, answering, recording, and dialling. It is possibl€. Expressions.

for the user to use the DSL scripting language directly, but this . . .
is not encouraged. The scripting language is primarily intended'® GPL includes a special type of node that implements a

for allowing integration of other dialogue development tool$IMPIe expression syntax. This means that calculations and

with the DFT. The DFT can import any legal and complete Sug_lmple data manipulations can be implemented directly in the
dialogue written in the DSL scripting language. dialogue description. This reduces the need to extend the

runtime system with external C-functions for many common
The user edits the flow of control in the dialogue description bgperations.
the method of direct manipulation. The user can directly refer to
and manipulate the commands and variables in the dianng
description trough a simple point and click iné@é. This is Although many commonly used operations can be
opposed to the name binding used in the textual scriptingcomplished in the diafjue description by the use of
language where names are used to bind a transit from one nedgressions, it is not intended to have the power of a general
to the label of the next command to be executed. purpose programming language. Complex application specific

The flow graph consists of nodes connected by arrows. Eagﬁocessing_must be implemented in an externa_l progra_mming
node represents some action to be taken at that point in]l_ﬁgguage like C, and added to the set of available dialogue

dialogue. The arrows specify the possible ways the diﬁereﬁ?mmands'
actions can follow each other. E. Procedures.

Extensions.

An extensive verification process helps to catch errors early iy, procedure frames appear as nodes in the node library. The
implementation process. The user interface of the DFT [SET automatically builds and maintains a default inspector for
intended to support the work of the dialogue designer througfa,y procedure nodes. This means that a procedure node can
the entire dialogue creation process. To aid this, the Va"datiﬂﬂmediately be used in the dialogue description and that the
process can be configured to check only certain aspects of E}%cess of calling a procedure node is equivalent to that of
dialogue design. In the early stages of the design phase, Hiing one of the basic nodes. Procedure nodes can also be
dialogue designer may want to merely sketch the overall flow gfjded to the common sub-dialogue library (see section 2.3),

the dialogue and not to be bothered with filling in the details Qfhich effectively makes them an extension of the dialogue
the individual dialogue actions. At this stage the designer M@hguage.

want to know only that the flow graph contains no dead ends or

unreachabl@odes. The DFT allows editing of such incomplete? 2 Suyb Language Definition.

dialogue descriptions but will not attempt to compile and run

them. Two approaches to sub language definition and sub grammar

design have been examined and elaborated:
A. Frames.

In the beginning of the project, the users evaluated a flow
chart based tool for drawing label based recursive
transition network grammars (RTNs) in a graphical

environment. The tool was a sub component of the Generic
Dialogue System described in [2] and similar to the

concept of the GrapHvite developer kit [10] with an

additional possibility of attaching “semantic actions” to

word transitions.

The dialogue flow graph is contained in a frame. A frame is
comparable to a function in C or a procedure in Pascal. A frame
can take any number of parameters and return any number of
values. In addition, a frame can hold a number of local
variables for its own internal calculations. The flow graph of a
large and complex dialogue will typically be split into a number

+ Since the revision of the project (cf. section 1), a radica2.3. Reusability in Spoken Dialogues.
different approach has been implemented based on the
initially somewhat vague idea that the Service CreatioA spoken dialogue system can be viewed as a program. The
Environment should be able to generate theessary sub task of creating a program becomes much easier when the
grammars based on a few word, phrase, or sentengedogrammer has at his disposal a suitable library of functions
examples typed in by the user. that fits the application domain. Also, when he makes several
]] o programs within the same application domain, he can often
The users rejected the first approach primarily be.causg thg flowyse parts of earlier programs. An obvious way to speed up the
chart based tool was too heavy to use when dealing with simp|gyjogue creation process would be to use suitable prefabricated

keyword or phrase (‘concept”) spotting tasks. Further, the to@lements. Unfortunately no great store of reusable dialogue
provided no facility for resource management or reuse Qmponents currently exists.

grammars.

o The users in the REWARD project need to use spoken
The second approach has led to the unification based toghjogues systems within the fields of telemarketing and market
described in greater detail in [5], [6], [7]. The tool presupposggsearch. For this to be viable, it must be possible to quickly
a Global User Lexicon where lexical items are coded in gnq cheaply create and deploy spoken dialogues systems. These
compound feature based format. The Global User Lexicagstems will typically have a limited life span but will be very
allows expressions likgcategory=city, country=UK}to be gimjlar in nature. It must be expected that there will be a large

deduced from word lists likeLondon, Leedsand subsequent gegree of commonality between such dialogues. This presents
expansion of the word lists based on the deduced expressiogs:opvious case for reuse.

“London, Leeds, Manchester, Liverpool 'etfcities in the

United Kingdom). A spoken dialogue system is a collection of many different
types of resources like common sub grammars for parsing dates,

Global User Lexicons are not necessarily “general” in @arsing passwords etc. Common sub grammars may be

linguistic sense. In the REWARD project, it is presupposed th@inpedded in common sub dialogues e.g. describing

they are implemented and maintained by the users themselgsyification dialogues in the context of date prompting,
and that they reflect the class of domains relevant to the useggissword prompting etc.

organisation. It is expected that the global lexicon largely can

be generated using attributed databases like staff lists, lists Tdfis complicates the process of collecting reusable spoken
articles or customers etc. available in the user organisatiofidlogue components. The flow graph description of a sub-
Thus, the Global User Lexicon is an important resourceialogue has little meaning without the underlying resources on
management facility of the Service Creation Environment (séghich it depends: sub grammars, word-models and prompts. An
section 2.3). important function of the Service Creation Environment is

o) managing resources and their interdependencies to simplify the
The unification based concept described above, presupposegygaction of reusable sub-dialogues.

more powerful compound feature based grammar formalism

than the initially evaluated RTNs. The formalism for sub/NVhen a sub-dialogue is found to be reusable, it should be
language definition is an Augmented Phrase Structure Gramnjaced in a frame and put in the library of common sub-
(APSG) format. APSGs are used both for parsing (extractirgjalogues. When a sub-dialogue is moved to the common sub-
semantics from) spoken input and, in a converted finite staggalogue library, the DFT first validates it to ensure that it is
approximation format, for constraining speech oggition. complete, It then makes a complete dependency analysis to
Vocabularies are phonemically transcribed using a dedicaté@rate all external resources referenced by the sub-dialogue.
transcription tool. Semantics generated by the parser Fdnally, the DFT makes a copy of all the resources referenced
represented in nested lisp-like frame structures that aly the sub-dialogue and attaches it to the sub-dialogue. This
interpreted by the dialogue manager of the run-time system. Feffectively turns the sub-dialogue into a fully self-contained and
a more detailed description of the grammar format, parsggusable dialogue unit.

converter, and semantic frames, refer to [4], [6]. The concepts.

. . L - . It'is the intention that user organisations over time will be able
behind the phonetic transcription tool are described in [1]. . : . . .
to build their own library of customised dialogue components.

As the user organisations mostly deal with very system-directed

dialogues, they will normally implement one named su2.4. Wizards

grammar for each state associated with a “system prompt” in the

dialogue. However, more than one sub grammar can be active/digards are a programmatic representation of pieces of domain

any time such that the dialogue control can branch on the nagRecific knowledge. The Dialogue Creation Environment

of the sub grammar recognising and parsing input. The systegfiploys wizards to encapsulate knowledge about the design

is capable of analysing grammars and deducing the possitied implementation of spoken dialogue systems. By using

values for each semantic frame. The DFT uses this facility #izards the dialogue designer can let the Dialogue Creation

validate branches on semantic values returned by the naturflvironment take an active part in the design and

language parser of the Run Time System. implementation of the dialogue. This can greatly speed up the
implementation of common spoken dialogue idioms and may
also help beginners to make better dialogues.

The DFT supports the use of two types of wizards:

» Task-wizards are pre-programmed actions that semi-

automates common dialogue design tasks and idioms. A 1.

task-wizard must be activated explicitly by the dialogue
designer to aid him with a certain task. An example could
be a wizard for building the skeleton dialogue for a
standard information retrieval task. The wizard would first

ask the designer to answer a number of questions about the 2

dialogue e.g. should it have an opening prompt? Should it
continue in a question-answer loop allowing multiple
inquiries? Etc. Based on the answers, the wizard will
perform the actions needed to build a standard
implementation of such a dialogue. Afterwards the
designer can work on from the template dialogue created
by the wizard.

e Guardian-wizards are active agents that are looking over
the shoulder of the dialogue designer, warning him about
problematic constructs and recommending alternatives.
Guardian-wizards may be triggered indirectly by actions
performed by the dialogue designer. An example could be
a wizard warning that a particular recognition vocabulary
is stressing the speech ogaition and is likely to yield
bad recognition performance. The wizard may then advise
the designer to use an extra turn to reduce the perplexity of
the individual turns.

Wizards for use in spoken dialogue design systems is still an
unexplored area. The Dialogue Creation Environment will

initially have very few wizards available. It is anticipated that

tasks for which useful wizards can be made will become
apparent through the process of building dialogues using the
tools.

3. CONCLUSION

A common requirement for the user organisations in REWARD
is the ability both to implement and deploy new spoken
dialogue applications within a very short time frame and to be
able to continuously update existing spoken dialogue services.
An important step for the organisations in achieving this goal is
to develop and maintain their spoken dialogue services in

house. The REWARD Service Creation Environment aims at -

simplifying the process of constructing a spoken dialogue
system to the level where non-specialists given a reasonable
amount of training can learn how to implement and deploy
spoken dialogue systems within their domain of expertise.

Due to the revision of the project mentioned in the introduction,
the users have not yet had time for a proper evaluation of the
Service Creation Environment. However, the strong user
involvement in the specification and design phases gives reason
to believe that the environment achieves the stated goals in
terms of both functionality and ease of use.

A release of the Dialogue Creation Environment for educational
and scientific use is planned. A more portable runtime system
needs to be developed for this release. The NLP modules will
be made available also as an independent distribution.

3.

5.

4. REFERENCES

O. Andersen, R. Kuhn, A.dzarides, P. Dalsgaard, J.
Haas, E. No6th: “Comparison of two tree-structured
approaches for grapheme-to-phoneme conversion”.
Proc. of ICSLP 1996, pp. 1808-11

A. Baekgaard: “A Generic Dialogue Systen$poken
Language Dialogue Systems 10. R 96-101, CPK,
Aalborg University 1996

T. Brgndsted, L.B., M. Manthey, P. Mc Kevitt, T.

Moeslund, K.G. Olesen: “The Intellimedia WorkBench
- an environment for building multimodal systems”.
Second International Conference on Cooperative
Multimodal Communication, Theory and Applications.
Tilburg 1998, pp. 66-7.0

T. Brgndsted, L.B., P. Dalsgaard, M. Manthey, P. Mc
Kevitt, T. Moeslund, K.G. OlesenA platform for
developing Intelligent MultiMedia Applications.
Technical Report R-98-1004. CPK, Aalborg University
1998

T. Brgndsted: “The Linguistic Components of the
REWARD Dialogue Creation Environment and Run
Time Systerh 4th IEEE WS on IVTTA. Turin 1998. In
press

T. Brgndsted: “The Natural Language Parsing Modules
in REWARD and IntelliMedia 200¢'. S. Kirchmeier-
Andersen, H.E. Thomsen (eds.): Proceedings from the
Danish Society for Computational Linguistics (DALF),
Copenhagen Business School, Dep. of Computational
Linguistics, 1998. In press

Tom Brgndsted: “Non-Expert gkess to Unification
based Speech Understandinghese Proceedings

K. Failenschmid: “Spoken Dialogue System Design —
The Influence or the Organisational Context on the
Design Proce8s4th IEEE WS on IVTTA. Turin 1998.
In press

K. Failenschmid, S. Thornton: “End-user driven

Dialogue System DesignThese Proceedings

10. K. Power, C. Matheson, D. Ollason, R. Mortorhe

grapHvite Book. For grapHvite v1.0. Entropic,
Cambridge Research Laboratory. Cambridge 1996

