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16 Place du Commerce, Verdun (Île-des-Soeurs),
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ABSTRACT

In this paper, the problem of robust speech recognition has been
considered. Our approach is based on the noise reduction of the
parameters that we use for recognition, that is, the Mel-based
cepstral coefficients. A Temporal-Correlation-Based Recurrent
Multilayer Neural Network (TCRMNN) for noise reduction in
the cepstral domain is used in order to get less-variant param-
eters to be useful for robust recognition in noisy environments.
Experiments show that the use of the enhanced parameters us-
ing such an approach increases the recognition rate of the con-
tinuous speech recognition (CSR) process. The HTK Hidden
Markov Model Toolkit was used throughout. Experiments were
done on a noisy version of the TIMIT database. With such a
pre-processing noise reduction technique in the front-end of the
HTK-based continuous speech recognition system (CSR) sys-
tem, improvements in the recognition accuracy of about 17.77%
and 18.58% using single mixture monophones and triphones, re-
spectively, have been obtained at a moderate SNR of 20 dB.

1. INTRODUCTION

The performance of existing CSR systems, whose designs are
predicated on relatively noise-free conditions, degrades rapidly
in the presence of a high level of adverse conditions. Several ap-
proaches have been studied for achieving noise robustness [7].
In this paper, we focus on optimizing the performance of an
CSR system by choosing a suitable distortion measure. The idea
of a robust distance measure is to extract relevant features from
speech signals which must be insensitive to degradations of the
speech signal due to interfering noise or distortions. Many ap-
proaches [1, 11, 5] have been used to extract relevant features
from a speech signal. Cepstral parameters are well suited to
speech recognition due to their compact orthogonality [1]. Un-
fortunately, cepstral features are highly sensitive to noise. It was
shown in [10] that cepstral distributions for clean data are well
behaved and approximately normal, but in the presence of noise,
their profiles are changed significantly and this consequently de-
grades the performance of an CSR system. It was found that
the cepstrum coefficients have the additional advantage that one
can derive from them a set of parameters which are invariant to
any fixed frequency-response distortion introduced by either the
adverse environments or the transmission channels [4]. Several
approaches to obtain a new set of robust parameters were intro-

duced in [6, 3, 8, 12].

In this paper, we propose a novel robust CSR system to be used
in additive noisy environments. Our approach for noise reduc-
tion is applied in the cepstral domain. It is based on the ap-
plication of a Recurrent Multilayer Neural Network (RMNN)
to the mel-based cepstral coefficients (MFCCs) on a frame-by-
frame basis, while taking into account the correlation effects of
the neighbor MFCCs. This approach is tested using the TIMIT
database contaminated by additive Gaussian Noise (AGN). We
proved via experiments that our approach outperforms the Cep-
stral Noise Reduction (CNR) approach [12] and the obtained
MFCCs are very close to the MFCCs representing the clean
speech over a wide range of signal-to-noise ratio (SNR) levels.

In order to reduce the noise effect on the MFCCs that will be
used in recognizing noisy speech, we designed a 3-layer RMNN.
The entry layer of such a network consists of 84 neurons, and a
12-neuron output layer without hidden layers. The output neu-
rons represent the 12 processed cepstral coefficients to be pre-
dicted to represent the present frame,t. The input layer is di-
vided into two groups. The first group consists of the noisy
MFCCs belonging to the present frame,t, and the preceding
4 frames. These latter are used in order to cope with the tem-
poral correlation between the MFCC coefficients for successive
frames. The second group consists of the output of the network
at the time instantst�1 andt�2, which represents the recurrent
part of the network. In order to calculate the weighting coeffi-
cients of such a network, a minimum mean square error criterion
is used during the training phase. The rule applied to train the
proposed network is theNorm-Cum-Delta Rules[9], where each
neuron uses atanhtransfer function.

2. CEPSTRAL COEFFICIENTS

The cepstral coefficients are used to describe the short-term
spectral envelope of a speech signal. The cepstrum is the in-
verse Fourier transform of the logarithm of the short-term power
spectrum of the signal. By the logarithmic operation, the vo-
cal tract transfer function and the voice source are separated.
Consequently, the pulse sequence originating from the periodic
voice source reappears in the cepstrum as a strong peak at the
quefrency lagTo. The advantage of using such coefficients is
that they reduce the dimension of a speech spectral vector while
maintaining its identity. There are two ways to obtain the cep-
stral coefficients: FFT cepstral and LPC cepstral coefficients.
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Figure 1: A Simplified Architecture of a Generic Identification
System.

In [1] the use of the Mel-scale (Equation (1)) in the derivation of
cepstral coefficients was introduced. It was shown in this study
that such a scale improves the performance of speech recogni-
tion systems over the traditional linear scale. The Mel scale is a
mapping from a linear to a nonlinear frequency scale based on
human auditory perception. An approximation to the Mel-scale
is:

mel(f) = 2595 log
10

(1 +
f

700
); (1)

where f corresponds to the linear frequency scale. For the
MFCC computations,N critical bandpass filters that roughly
approximate the frequency response of the basilar membrane
in the cochlea of the inner ear are selected. These filters span
156 � 6844 Hz and are spaced on the Mel-frequency scale de-
fined in equation (1), which is roughly linear below1 kHz and
logarithmic above this frequency. The filters are triangular and
multiplicatively scaled by the area. These filters are applied to
the log of the magnitude spectrum of the signal, which is esti-
mated on a short-time basis. To obtain the MFCCs,Cn, a dis-
crete cosine transform, is applied to the output of theN filters,
Xk, as follows:

Cn =

NX
k=1

Xk cos

�
� n

N
(k � 0:5)

�
; n = 1; 2; :::;M; (2)

whereM is the number of the cepstral coefficients,N is the anal-
ysis order andXk; k = 1; 2; :::; N , represents the log-energy
output of thekth filter. For the MFCC computations,20 trian-
gular bandpass filters were used.

3. RMNN NOISE REDUCTION NETWORK

3.1. Training

Fig. 1 shows the general identification algorithm. In accordance
with this general algorithm, we proposed an RNN for the noise
reduction in the cepstral domain as shown in Fig. 2. This RNN is
a three-layer network with all the outputs of the output layer fed
back to the input layer. The shown RNN is a dynamic system
with an output depending on all previous inputs. Hence, it in-
corporates the dynamic information of the input speech cepstral
signal for adapting noisy cepstral coefficients to clean ones. The
RNN is first trained by the output delayed back-propagation al-
gorithm described in section 3.2. Such a training phase permits
the adjustment of the weight values in order to obtain an esti-
mated outputĈ(n) similar to the desired clean cepstrum value
C(n).
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Figure 2: Training RNN Topology.

Minimization of the error between the estimated and the de-
sired values is performed using a quadrature mean error criterion
(QEM) given by:

QEM = e2(n) =
1

P

PX
p=1

�
Cp(n)� Ĉp(n)

�2
; (3)

whereP is the dimension of the MFCC vector.

3.2. Weights Modification Algorithm

Given the input vectorC
0

(n) = [C
0

1(n); :::; C
0

p(n)]
T and the

weight vectorW(n) = [�(n);W1(n); :::; Wp(n)]
T , wherep is

the number of the neurons at the input of the network and�(n)

is a threshold value, the actual response of the networkĈ(n) is
computed during a training phase using a convergence algorithm
to update the weight vector in a manner to minimize the error be-
tween the output̂C(n) and the desired responseC(n) as follows
[14]:

1. Initialization
W(0) = random(-0.1,0.1).

2. Activation
Assign values to both the input and the desired output of
the network:C

0

(n) andC(n).

3. Output Computation

Ĉ(n) = tanh(WT(n)C
0

(n))

4. Weight Vector Adaptation
for each iteration:
m(n+ 1) = m(n) + �1e(n)C

0

(n)
for each iteration modulo epoch=0:

� W (n+ 1) = W (n) +m(n) + �2a(n) ,

� a(n) = m(n),

� m(n+1) = 0,
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Figure 3: Noise Reduction RNN Topology.

where0 � �1; �2 � 1:0
and the errore(n) is given bye(n) = C(n)� Ĉ(n).

5. n = n+ 1; go back to step 2.

3.3. Noise Reduction

The noise reduction using the proposed approach is shown in
Fig. 3. The particularity of such a topology is the use of two
output-delayed values as the input to the network. This in turn
forces the network to take into consideration the preceding esti-
mated values in order to invoke the estimation of the succeeding
values. The two delayed̂C(n) allows centering, in the time-
domain, the input noisy signal with respect to the output signal.
That is, at a time instantt, the network restoreŝC(t) with the
values:C

0

(t�2); C
0

(t�1); C
0

(t); C
0

(t+1); C
0

(t+2), using
the optimum weights obtained during the training phase.

3.4. HTK

The speech recognition system used in our experiments, HTK,
is completely described in [13]. HTK is an HMM-based speech
recognition system. The toolkit can be used for isolated or con-
tinuous whole-word-based recognition systems. The toolkit was
designed to support continuous-density HMMs with any num-
bers of state and mixture components. It also implements a
general parameter-tying mechanism which allows the creation
of complex model topologies to suit a variety of speech recogni-
tion applications.

4. EXPERIMENTS

4.1. Database

In the following experiments the TIMIT database, described in
[2], was used. The TIMIT corpus contains broadband recordings
of a total of6300 sentences,10 sentences spoken by each of630
speakers from8 major dialect regions of the United States, each
reading10 phonetically rich sentences.To simulate a noisy envi-
ronment, white Gaussian noise was added artificially to the clean
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Figure 4: Comparison between original, noisy and enhanced
MFCCs.

speech. To study the effect of such noise on the recognition ac-
curacy of the CSR system that we evaluated, the reference tem-
plates for all tests were taken from clean speech. On the other
hand, the dr1 subset of the TIMIT database was chosen from the
available database to evaluate the recognition system.

4.2. Noise Reduction

In this study, the RMNN was trained using noisy speech with
a 20 dB SNR using the above-mentioned algorithm. The ob-
tained weight values are then used in order to reduce the noise
in the MFCCs input to the CSR system as shown in Fig. 3. It is
clear from the comparison illustrated in Fig. 4 that the processed
MFCCs, using the proposed recurrent neural network, are less
variant than the noisy MFCCs and closer to the original MFCCs.
These results reflect the improvement of the recognition accu-
racy when such coefficients were used for the recognition of con-
tinuous speech, as shown in Tables 1 and 2.

4.3. Recognition Platform

In order to recognize the continuous speech data that has been
enhanced as mentioned above, the HTK-based speech recog-
nition system described in [13] has been used throughout all
experiments. 12 MFCCs were calculated on a 30-msec Ham-
ming window advanced by 10 msec each frame. Then, an FFT
is performed to calculate a magnitude spectrum for the frame,



�Sub(%) �Del(%) �Ins(%) CWrd(%)
Clean Cep 26.59 13.97 1.88 59.44
Noisy Cep 46.92 22.11 1.98 30.97
Enhanced Cep 35.35 14.18 1.67 50.47

Table 1: Comparisons of the recognition performance of the
RNN-Based HTK CSR system to the baseline HTK using single
mixture monophones and the dr1 subset of the TIMIT database
when contaminated by AGN, SNR=20dB.

�Sub(%) �Del(%) �Ins(%) CWrd(%)
Clean Cep 18.67 6.15 1.67 75.18
Noisy Cep 37.96 12.20 3.55 49.84
Enhanced Cep 28.28 7.72 2.92 63.40

Table 2: Comparisons of the recognition performance of the
RNN-Based HTK CSR system to the baseline HTK using sin-
gle mixture triphones and the dr1 subset of the TIMIT database
when contaminated by AGN, SNR=20dB.

which is averaged into 20 triangular bins arranged at equal Mel-
frequency intervals. Finally, a cosine transform is applied to such
data to calculate the 12 MFCCs as described in [4] to form a 12-
dimensional (static) vector. This static vector is then expanded to
produce a 24-dimensional (static+dynamic) vector upon which
the HMMs, that model the speech subword units, were trained.
The static vector is extended by appending the first-order dif-
ference of the static coefficients. The baseline system used for
the recognition task uses either a mono- or tri-phone Gaussian-
mixture HMM system.

The speech data is segmented into30-msec frames with10-msec
overlapping. Each frame is weighted by a512-point Hamming
window, and then the DFT using512-point FFT of that frame is
computed. Then the feature vector is calculated for each frame.
Each vector is composed of12 static MFCCs, plus the dynamic
coefficients. This leads to a24-element vector per frame.

5. RESULTS

Applying the overall proposed recognizer to the noisy version
of the TIMIT database with a SNR of 20 dB, and carrying on
some experiments proved that the recognition accuracy has in-
creased significantly when the RMNN is used before perform-
ing the recognition. In order to evaluate the performance of our
proposed system, we compared the performance of the RNN-
based HTK recognizer to the baseline HTK recognition system.
The relative changes in the word correctness rate,CWrd, when
using our proposed system for testing on a subset of the TIMIT
database using single mixture Gaussian models over the baseline
HTK are shown in Tables 1 and 2.

6. CONCLUSION

In this paper, a new robust CSR system based on RNN has been
described. This was realized by the inclusion of such a net-
work in the pre-processing enhancement algorithm used in the
recognition process. We proved via experiments that the pro-

posed RNN-based recognition system system is robust and out-
performs the baseline recognition system in an AGN environ-
ment.

We are currently continuing the effort towards the inclusion of
our proposed RMNN in the front-end of an automatic speech
recognition system in order to test the new enhanced parameters.
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