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ABSTRACT

In this paper, a new feature extraction methodology based on
Wavelet Transforms is examined, which unlike some
conventional parameterisation techniques, is flexible enough
to cope with the broadly differing characteristics of  typical
speech signals. A training phase is involved during which the
final classifier is invoked to associate a cost function (a
proxy for misclassification) with a given resolution. The sub
spaces are then searched and pruned to provide a Wavelet
Basis best suited to the classification problem. Comparative
results are given illustrating some improvement over the
Short-Time Fourier Transform using two differing subclasses
of speech.

1.1 INTRODUCTION

Multi-scale feature extraction is an attractive option when
representing non-stationary real world signals such as
speech. Coupled with integrated optimisation of the feature
extraction and classification stages the aim is to provide an
overall improvement in recognition performance. The
problem is relevant because as modelling techniques have
become vastly improved in recent years, further gains in
recognition accuracy are likely to come from the
preprocessing stage.

Wavelets and related techniques like subband coding have
been applied with considerable success to speech processing
applications such as compression [3],[4], and to a more
limited extent on feature extraction for speech recognition /
classification [5],[6].
Their main advantages are a somewhat richer multiresolution
representation of  the acoustic signal and the flexibility to use
one of a number of  basis functions. Subsequent refinements
that aim to efficiently model signal statistics by choosing the
depth of projection and amount of signal reduction
adaptively [1] serve to improve accuracy of the model
further.

Learning from the training set the best set of subspaces in
which to model the data, results in a discriminant basis set
which will highlight using the expansion coefficients of the
wavelet transform (preferably just a few) the major
differences between classes. If feature reduction is
subsequently carried out, then the final classifier is designed
in lower dimensional space. Assuming the data is well
modelled in the first place, then there is a better chance of the
classes being well separated  by the classifier.

In this paper, we propose an implementation of this
theoretical framework for tackling phoneme classification
problems. The method is outlined in the next section.

2.1 Method

Let us first define the Discrete or Dyadic Wavelet Transform.
The wavelet transform can be developed from a number of
existing theories, here we will consider the extension of the
DWT from its continuous counterpart; the CWT since this is
intuitively similar to the Short Time Fourier Transform. The
basic analysing or mother wavelet is given by:
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where τ  and a are time shift and scale

respectively. This shifted scaled set of  functions forms an
orthonormal family if sampled appropriately see [7] for
further details of this. The h(t) furthermore, satisfy a number
of  constraints to enable them to be wavelets. For example,
most well designed wavelets have compact support both in
time and frequency enabling good feature localisation in the
respective domains. Wavelet regularity, vanishing moments
and orthogonality are design parameters which influence
factors such as reconstruction fidelity, degree of compression
achievable, or type of signal most suitable for decomposition
in that wavelet basis. A wealth of literature exists on this
subject see [7], [8], [9] for details.
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with the added constraint that 0)( =∫ dtth .

The discrete wavelet transform is just a projection of  a given
signal onto these analysing functions:
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The algorithm used in the following experiments is
connected to the Local Discriminant Bases [1] developed for
classification as a direct extension of the original Best-Basis
algorithm [2]. The LDB uses dictionaries of Wavelet Packets
and Local Cosine Transforms, which will be defined shortly,
to form a library from which the best basis dictionary may be
chosen using, as criterion, one of a number of cost functions.
These cost functions, of which there are a number of
differing types, are generally additive, but all essentially
provide a measure of ‘energy concentration’ of the vector.



Definition: An additive cost function ϑadd from a sequence
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In LDB, the cost function used is relative entropy which
should be a good measure of the power of discrimination of
each subspace. If we consider a simple two class case, where
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distributions of signals belonging to class 1 and class 2
respectively. The Relative Entropy is then given as :
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Typically one first computes an estimate of the class
probabilities by calculating a time-frequency energy map for
each signal class from the Wavelet packet / Cosine packet
transforms.

Definition: The Wavelet/Cosine Packet Transform is a
generalisation of the standard discrete wavelet transform
given in (2).If the signal subspace is given as Ω,j,k ie the
coarsest resolution, then each node is split recursively in a
manner similar to the DWT to form a binary tree of
subnodes. If j is the depth and k the subspace number (either

0 or 1), the first level will have two subspaces, Ωj+1,k and

Ωj+1,k+1.The next will have four and the Jth 2J
. In total

there will be 
122

−J
possible subnodes in the tree and the

issue is to extract a non redundant signal representation by
assigning criterion such as Relative entropy to each node
and pruning/growing a tree to maximise this measure.

The DWT on the other hand is iterated only on the Low Pass
part of its decomposition and is such that a non-redundant
representation is guaranteed. Wavelet Packets, on the other
hand, have the advantage of covering signal space entirely
and provide an unfixed resolution tiling of the time-
frequency plane although the Heisenberg inequality principle
still of course holds. However they are overcomplete and
require some kind of pruning if orthogonality is to be
achieved. This search will be fast if the cost function is
additive.
Local Trigonometric Transforms or Sine/Cosine Packet
Transforms are exactly analogous to the WP transform
except that they partition the time instead of the frequency
axis smoothly.

Here is the LDB algorithm used in the experiment. Assume

Φj,k
  is the discriminant measure, whether additive or not, let

Dj,k represent the Best Discriminant Basis and Rj,k the fully
expanded, redundant basis:

0) Choose to use either trigonometric dictionaries or
Wavelet Packets for the transform.

1) Expand every signal in the training set into its wavelet
packet table.

2) Determine the set of most discriminant subspaces using
a top down pruning methodology by testing the efficacy
of each subspace for discrimination.

i.e. set a temporary array kjkj ,, Φ=ℑ

if 12,12,1, +++ ℑ∪ℑ≥ℑ kjkjkj ; Dj,k=Rj,k;
else

Dj,k=Dj+1,2k⊕ Dj+1,2k+1 and set

12,12,1, +++ ℑ∪ℑ=ℑ kjkjkj

3) Rank the expansion coefficients according to their
discriminant power and from these select the top

nk ≤  features (where 
non 2=  is the dyadic length

of the signal) for each signal in the training class to
construct the final classifier.

The LDB gained from step two is an orthonormal basis, also
if the cost function is additive, this step will be fast.
Step 3 isn’t necessary since we can still design the classifier
on all the features, however if the dimensionality of the
problem is reduced, this step will reduce the number of
interfering components in the decomposition, making the
class-specific features more robust. Computational training
times will simultaneously be reduced. In practice one can
rank the expansion coefficients by a) Finding the
discriminant validity of a particular basis function in the
LDB expansion. b) Use Fishers class separability index to
rank the coefficients.

Results

In the following experiments, the above algorithm was
implemented using the standard LDB configuration: an
additive cost function of Relative Entropy and the best-

nk ≤  chosen using the same criterion.

 This approach was compared with a configuration using
non-additive costs; a proxy for LDA-derived
misclassification rate was used and the expansion
coefficients ranked using Fishers class separability criterion.
In addition in this case, we applied a small non-linear
thresholding to the subspace vectors prior to calculating the
misclassification rate. The final classifier in both cases was
LDA thus in case 2 the same optimality criterion was used
both in the evaluation of suitable features for class
separability as for the final classification estimate. The
wavelet used in all cases was the Daubechies 6th order
wavelet.

The phoneme classification problems broached dealt two
extreme cases: first, three well behaved (in the statistical
sense), well separated vowels aa,ax,iy corresponding to the
back, mid and front positions of the tongue during voicing
were examined. Secondly, the three unvoiced stops, p,t,k
were discriminated against one another. In both cases, the



phonemes were extracted from dialect region 1 of the Timit
database from all speakers both male and female to ensure a
good statistical representation of each sound. The speech
datasets used were sampled at a rate of 16Khz, thus the 32ms
window, which we assumed, was composed of ~512
samples.
The results gained using the methods outlined plus a
benchmark version of the STFT, commonly used in speech
parameterisation are given in Table 1.

Technique Error Rate
(Training)

Error Rate
(Testing)

Problem

LDA on
STFT64 9.39% 10.35% iax

LDA on
LDB60 8.53% 9.40% iax

LDA on
LDBuLDA60 9.2% 10.1% iax

LDA on
STFT64 33.51% 43.87% ptk

LDA on
LDB60 31.41% 39.68% ptk

LDA on
LDBuLDA60 30.68% 42.58% ptk

Table 1: Misclassification rates of the feature extraction
techniques when applied to two phoneme classification
problems. LDA,STFT64,LDB60 indicate the type of final
classifier used, 64 short-time fourier transform gained from
whole 512 via decimation, the top 60 expansion coefficients
extracted using standard LDB.LDBuLDA60 is the top 60
coordinates obtained using LDA-derived optimality criterion.

CONCLUSIONS

With regard to the number of features chosen,  approximately
10% of the original signal dimensionality was used. The
performance of the wavelet methods was noticeably better
than the STFT. The initial computational cost of the Wavelet
Packet related methods is always going to be greater since
there is a significant cost in the pruning part of the algorithm
not present in FT methods - especially if LDA is used at this
stage. However this is only a training cost, once a basis tree
is worked out, all subsequent signal known to belong to a
broad phonetic subclass can be decomposed in a comparably
fast manner. It should also be emphasised, in particular for
the ptk experiment that this is a difficult classification
problem, we ourselves would generally use context and
higher level knowledge to characterise  these. The type of
system proposed has been shown to provide some
improvement over a standard widely used parameterisation
technique in two situations, it is likely to be of robustly
similar performance in other recognition scenarios. As a
preprocessing technique to standard modelling conventions
e.g. HMM it certainly shows some promise. It is likely
anyway that a better recogniser would highlight
improvements between Wavelet over Fourier
decompositions, it has been noted in [10] that LDB derived
features appeared “oblique” in a sense and this is borne out
in some of our other experiments where the true

multiresolutional advantages of wavelet appeared much
superior. Better performance could also be had by using
some standard preprocessing of which none was done here
since for the purposes of comparison this was irrelevant.
With regard to the decrease in performance between standard
LDB and LDB using an LDA-derived non-additive cost, we
felt was perhaps due to non-linear relations within the
training set not being exploited. Instead of using LDA, in
future we will try a neural network to provide a cost and
incorporate this seamlessly into the whole design.
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