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ABSTRACT distances in the FCM functionals are redefined as the
negative of logarithms of density functions, which are

A fuzzy clustering based modification of Gaussiarproducts of mixture weights and Gaussian functions.
mixture models (GMMs) for speaker recognition isThese distances are usedentropy constrained vector
proposed. In this modificatioriuzzy mixture weightare quantisation (VQ) or generalised k-meansVQ
introduced by redefining the distances used in the fuzapproaches in speech and speaker recognition [5]. In this
c-means (FCM) functionals. Their reestimation formulasnodification, fuzzy mixture weightare defined and are
are proved by minimising the FCM functionals. Theproved together with fuzzy mean vectars fuzzy
experimental results show that the fuzzy GMMs can beovariance matricesn the reestimation formulas. The
used in speaker recognition and it is more effective thaBMMs in this modification could be nametlzzy
the GMMs in tests on the T146 database. Gaussian mixture mode{EGMMSs).

1. INTRODUCTION 2. GAUSSIAN MIXTURE MODELS

In speaker recognition, the GMMs are used to model tHeet X = {x;, X,, ..., X7} be a data set of vectorsx;, each
distribution of spectral feature vectors of speakers. Thef which is ad-dimensional feature vector extracted from
model parameters which areean vectors, covariance digital speech processing. Since the distribution of these
matrices and mixture weights are trained in an vectors is unknown, it is approximately modelled by a
unsupervised classification using the expectatioGaussian mixture density, which is a weighted sum of
maximisation (EM) algorithm [6,8,11]. This algorithm component densities given by the equation

provides an iterative maximum likelihood estimation

technique. Experiments have shown that GMMs areéX(X;|A)= Zp|N(Xt HiCi) (2.1)
effective models capable of achieving high identification i=1

accuracy for short utterance lengths from unconstrainethere p;, i = 1 G are the mixture weights,
conversational speech [8]. N(x¢,Hi,Ci), 1 = 1,..., g are thed-variate Gaussian

FCM clustering is the most widely used approach in botRomponent densities with mean vecfprand covariance
theory and practical applications of fuzzy clusteringMatrixC

techniques to unsupervised classification. It is an ex;{—%(xt 1 ) G % )}
extension of the hard-means algorithm and was first N(X¢,K;,Ci)= TEPPNETE (2.2)
introduced by Dunn [2]. From the classical within groups (2m) ICil

sum of squared errors function Dunn first generalised, thﬁhere(xt —p; ) is the transpose dfx, —p; ) and\ is a

infinite family of FCM functionals were generalised by
Bezdek [4], where a weighting exponenbn each fuzzy set of all parameters contained in the probability model,
A={pi.4i,Ci}, i=1,.., clIn training the GMM,

membership and a distanceAmorm (@A is any positive _ _
definite matrix) were introduced. The FCM algorithmsthese parameters are estimated such that in some sense,
are used to minimise the FCM functionals, whierezy they best match the distribution of the training vectors.
mean vectorsare iteratively updated. Gustafson andThe most popular estimation method is the maximum
Kessel [3] proposed a modification of the FCMlikelihood (ML) estimation. For a sequence of training
algorithms which attempts to recognise the fact thatectorsX, the likelihood of the GMM is

different clusters in the same data set may have differing T

geometric shapes. These algorithms were referred to &% X |A)= |_| p(X¢ [A) (2.3)
fuzzy covariance clustering algorithms whefazzy e o i

covariance matricesf clusters were defined. The aim of ML estimation is to find a new parameter

A fuzzy clustering based modification of GMMs is model A _SUCh Fhat_ p(X!A)z PCXTA). MaX|m|sm.g_
proposed in this paper. To obtain this modification, theP( X |A) in applications is not easy, hence an auxiliary



functionQ is used find a suitable measure of clusters, referred to as a
R 3 o clustering criterion. Objective function methods allow the
Q(AA) =3 p(ilx¢,A)logl By N(x¢ 1, Ci )] (2.4)  most precise formulation of the clustering criterion. The

i=1 most well known objective function for fuzzy clustering
wherep(i|x;,A) is the a posteriori probability for in Xis the least-squares functionals, the infinite family of
acoustic clasg i = 1,...,cand satisfies fuzzy c-means (FCM) functionals, generalised from the
classical within groups sum of squared errors function by
_ P N(x¢, i ,Ci) Bezdek [4]

p(i X, A) =~ (2.5) Te

> PN(X¢, pi, Ck) Jm(Ualth):tZliZlUit dit @1

k=1 T

where U = {uy} is a fuzzy c-partition of X, eachu;
srepresents the degree of vectqrbelonging to theth
cluster, forl <i< candl <t< T, we have

Maximising theQ function is performed using the EM
algorithm. The basis of the EM algorithm is that i

QAA)2Q(AA)  then p(X|A)zp(X[A) [6,8] c
Setting derivatives of th® function with respect t& to O<ur<land } u; =1 (3.2)

zero, the following reestimation formulas are found ) i=1 o
T m > 1 is a weighting exponent on each fuzzy
P = 1 z p(i | x¢,A) (2.6) membershipi, and is called the degree of fuzziness;
TS U= (4, ..., k) are cluster centers amnd, is the distance
T in the A norm fromx; to p;, known as a measure of
> p(ilxe,A)x¢ dissimilarity
g @7)  df =Alxg —w lIR= O =m ) A — 1) (3.3)
_1p(||xt,)\) The basic idea in FCM is to minimis&, over the
t= variablesU andy, on the assumption that matridéghat
L — = i are part of optimal pairs fak, identify good partitions of
_ tle(l P A0~ B (e — 1) the data. Minimising the fuzzy objective functidy in
G = T (2.8) (3.1) gives
S p(i1x;A) ald ot
t=1 Uit = %Z(dit [ dy)?(M (3.4)
The algorithm for training the GMM is described as =1 g
follows T T
Hi :zuirtnxt/zuirtn (3.5)
Algorithm 1: t=1 t=1

Step 1:Generate the a posteriori probabilifi|X¢.A)  The FCM algorithm is known as théuzzy vector

at random satisfying (2.5) _ quantisation (FVQ) algorithm in speech and speaker
Step 2:Compute the mixture weight, the mean vectorrecognition and is used to train codebooks in the VQ
and the covariance matrix following (2.6), (2.7) and (2.8) approach. This algorithm is described as follows

Step 3:Update the a posteriori probabilitp(i | X; ,A)

following (2.5) and compute th€ function following Algorithm 2:

(2.4)

Step 4:Stop if the increase in the value of Bgunction

at the current iteration relative to the value of Qe
function at the previous iteration is below a chose
threshold, otherwise go to step 2.

Step 1:Choose any inner product norm metric IR)dr, fix
candm,2 < c < T, m> 1 Generate matri¥J at random
satisfying (3.2)
Iétep 2:Fori=1,..., ¢, compute the fuzzy mean vectors
{u} with (3.5) and the distanced; with (3.3). Ifd; =0

for somet, setuy =1, us =0, Os# t
3. FUZZY CLUSTERING Step 3:Update matrixJ using (3.4)
Step 4:Stop if the decrease in the value of the fuzzy
objective function,, at the current iteration relative to the
value of thel,, at the previous iteration is below a chosen
}hreshold, otherwise go to step 2.

Consider the above-mentioned data <€t of d-
dimensional vectors;, t = 1,..., T Its structure can be
analysed by means otluster analysis technique
Clustering also known as unsupervised learning or sel
organisation inX is a partitioning o into ¢ subsets oc

clusters1 < ¢ < T. The most important requirement is toAn interesting modification of the FCM algorithm was

proposed by Gustafson and Kessel [3,4]. It attempts to



recognise the fact that different clusters in the same data re
set X may have differing geometric shapes. AJm(U,1,C,p)=-> > uj log p;

generalisation to a metric which appears more natural was t=1i=1 (4.4)
made, through the use of a fuzzy covariance matrix. e .

Replacing (3.3) by an inner product induced norm metric =2 D Uit 1og N(x¢,1i,Ci)

of the form t=li=1

di? =(X¢ =i ) Mi(Xe —1) (3.6) Minimising Jy, is performed by minimising each term on

_ _ N o _ the right hand side of (4.4). For minimising the first term,
with M; symmetric and positive definite. Definefazzy using the Lagrange multipliei [6], the following

covariance matrixC; by augmented objective function is maximised
T T

Ci = uit'(Xe —Hi J(X¢ M )'/Zuirtn (3.7 f(p):%iu{t"log P +)\§ pi (4.5)
= t=1 t=1i=1 i=1

then M =(IM; |IC; ) C (3.8) wehave

where M;| and €| are the determinants &; and G, il ym

respect!vely anal is the feature space dimensiodi|lis tzl it

constrained by a fixed parameter for eaf3i. Pi = (4.6)

cT m

Step 2 in the algorithm 2 is now generalised by Z Z“it

computing thec fuzzy mean vectorgy} with (3.5), the 1=1t=1

fuzzy covariance matri; with (3.7) and the distancels | . . . .

with (3.6). Ifdy = O for somet, setu; = 1, U = 0, OS# t. pi in (4.6) is defined thduzzy mixture weightThe
minimisation of the second term of (4.4) is obtained by
setting its derivatives with respect p and C; to zero,

4. FUZZY GAUSSIAN MIXTURE MODELS i=1,...,c

T
A further modification of the FCM algorithm is proposed ) uf'C (X i ) =0 (4.7)

in this paper. Our goal is to apply FCM estimate to ari=1

Bayesian classifier in the particular case of a mixture of T '

Gaussian distributions. It attempts to recognise the fag Yit [Ci ~(Xt =i )(X¢ ~K;)' ] =0 (4.8)
that different clusters in the same data Xetbeyond =1

differing geometric shapes, may have differing datgg get (4.8), the following identities are used

densities, denoted by mixture weights (classpriori

probabilities). A generalisation to a metric is madeUp(P Ab)=Ab+Ab, OA(b Ab)=bB and

through the use of fuzzy covariance matrigand afuzzy _ a1

mixture weight To obtain these, since the density of theDA [AEATIA (4.9)
data in clusteri is proportional to the joint mixture whereA andb are ad-by-d matrix and ad-dimensional
density function f(x;,i|A ) we can define the column vector, respectively. From (4.7) and (4.8) we

dissimilarity denoted by the distance in (3.3) as have
dF =~log f (x;.i13) =~log[p; N(x. 1 C)] (4.1) S ulf,
Using (2.2), we have u = tle— (4.10)
di =~log p +%log(2m)? |G | w2 > uff
10 -1) G 1) | thl
> uit (X¢ =R J(X¢ — K )

An approximation of this distance was usedemropy = {5
constrainedVQ algorithm orgeneralised k-mean¥Q Ci = T (4.11)
algorithm to train codebooks in the VQ approach from the z ufl

training data seX [4,5]. The argument list of J, is =1

extended usin@ = {C,,..., G} and p = {py,..., p} and

we still have whereu, is computed using (3.4) since it is derived from
T ¢ minimising J,, with {ug} as variables. The algorithm
Im(U.nC.p)=3 zuirtndi% (4.3) based on these estimation formulas could be named the
t=1i=1 fuzzy Gaussian mixture mod@iGMM) algorithm and is

Substituting (4.1) to (4.3) gives stated as follows



Algorithm 3: Number of Equal error rate for
Step 1L:Fix candm, 2 < c < T, m > 1 Generate matrii mixtures GMM FGMM
at random satisfying (3.2) 32 6.45 % 6.03 %
Step 2:Fori = 1,..., ¢, compute thec fuzzy mixture 64 4.89 % 4.12 %
weights{p;} with (4.6), the c fuzzy mean vectorqy} 128 3.75 % 3.75 %

with (4.10), thec fuzzy covariance matricefCi} with
(4.11) and the distancek in (4.3). Ifd; = O for somet,
setu; =1, us=0,0s#t

Step 3:Update matridt using (3.4)

Step 4:Stop if the decrease in the value of the fuzz
objective function,, at the current iteration relative to the
value of thel,, at the previous iteration is below a chose
threshold, otherwise go to step 2.

5. EXPERIMENTAL RESULTS

According to the theoretical considerations above, we
present in this paper the results of GMM-based an@
FGMM-based speaker recognition experiments. Th ]
commercially available TI46 speech data corpus is us %
to compare these algorithms. There are 16 speakers,
female and 8 male, labelled f1-f8 and m1-m8,
respectively. The vocabulary contains a set of ten singl¢3]
word computer commands which amnter, erase, go,
help, no, rubout, repeat, stop, staatjdyes Each speaker
repeated the words 10 times in a single training session
and then again twice in each of 8 later testing sessior{él
The corpus is sampled at 12500 samples per second and
12 bits per sample. The data were processed in 20.48
frames (256 samples) at a frame rate of 125 frames per
second (100 sample shift). Frames were Hamming
windowed and preemphasised with= 0.9. For each [6]
frame, 46 mel-spectral bands of a width of 110 mel and
20 mel-frequency cepstral coefficients (MFCC) were
determined [12]. In the training phase, 100 trainind7]
tokens (10 utterances x 1 training session x 10 repetition(@)]
of each speaker were used to train GMMs and FGMMs
32, 64, 128 mixtures.

Speaker identification was carried out by testing all 2566
test tokens (16 speakers x 10 utterances x 8 testing
sessions x 2 repetitions) against the GMMs and the

FGMMs of all 16 speakers in the database. The
experimental results are as follows: [10]
Number of Identification Error Rate for
mixtures GMM FGMM
32 22.53 % 22.05 % [11]
64 18.59 % 16.48 %
128 14.97 % 12.63 %

Speaker verification in text-dependent mode with 16({)12]
tokens for each model (10 short utterances x 8 testing
sessions x 2 repetitions) using the similarity normalisation
method for speaker verification based on a posteriori
probability proposed by Matsui and Furui [9,10] . The
experimental results are as follows:

6. CONCLUSION

In this paper, the fuzzy gaussian mixture model (FGMM)
Igorithm has been proposed for speaker recognition.
his algorithm has been compared with the well-known

{SMM algorithm. Results show an error reduction for the
new algorithm and show that the FGMM algorithm is
applicable in
verification applications.

speaker identification and speaker
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