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ABSTRACT of generalization ability for unseen data. In another word, over-
fitting to the training data is inevitable.

A novel method to prevent the over-fitting effect and improve, oger o improve the generalization ability of the MCE learn-
the generalization performance of the Minimum Classificationy, 5 regularization technique, which is widely used to solve ill-
Error (MCE) / Generalized Probabilistic Descent (GPD) leam'posed problems, is employed in this study.
ing is proposed. The MCE/GPD method, which is one of the

newest discriminative-learning approaches proposed by Katagiri

and Juang in 1992, results in better recognition performance d. MINIMUM CLASSIFICATION ERROR
various areas of pattern recognition than the maximume-likelihood LEARNING

(ML) based approach where a posteriori probabilities are esti-

mated. Despite its superiority in recognition performance, it stil| . ) . .

suffers from the problem of over-fitting to the training samples ajset gi(x; Ax) be a discriminant function with positive value to

it is with other learning algorithms. In the present study, a re discriminate a data of clas, from the other classes, whexes

D . . .
ularization technique is employed to the MCE method to overR andA, denote a vector iD-dimensional feature space and

come this problem. Feed-forward neural networks are employ@dset of parameters of the discriminant function, respectively. For
as a recognition platform to evaluate the recognition performand! INPut vector, if the following equation holds

of the proposed method. Recognition experiments are conducted gk (3 A) > gi(x;A;) foralli #k €h)

on several sorts of datasets. The proposed method shows better lassified las

generalization performance than the original one. thenx is classified to clase.

In the framework of MCE learning, misclassification measure for
a given sample of class;, is defined as follows

1. INTRODUCTION [

1/n
1
di(x) = —gr (% M) + | 57 > gj(X;Aj)"-| @
The idea of Minimum Classification Error (MCE) / Generalized [ Jhi#tk J
Probabilistic Descent (GPD) learning was first proposed in 1992

by Katagiri and Juang [1] to establish a general learning frame\therec represents the number of classes afisla positive con-

L I . =~ . Stant. In an extreme case wheygoes to infinity, the misclassifi-
work for minimizing classification error of an arbitrary discrim- cation measure becomes
inant functions. In contrast to the maximum likelihood (ML)
based learning which estimates probabilistic distributions of data dp(x) = —gr(x; Ax) + max g;(x; A;). 3)
based on a model, MCE/GPD learning adapts the parameters of e
the model on the basis of minimum classification error. Althougt®bviously dr(x) < 0 in case of correct classification, and
a number of discriminative-learning algorithms have been prai#x (x) > 0 in case of misclassification.
posed so far, the MCE/GPD learning is unique in the sense that . . A
it is applicable to arbitrary discriminant functions that are differ->S"9 the m|scla55|f|cat_|on_measurg for a se_t _of_dXta_:
entiable in respect to the parameters that are to be adapted. TO{B‘é’ X2, ’XP}’_ the objective functlon_to be m_|n|m|zed Is de-
specific, it can be applied to discriminant functions that deal WitIJ;Ined as an empirical average cost function as given below
variable record length of data like speech recognition.

P C
Lo(AIX) = £ 3 (o)1l € %), ()

The MCE/GPD learning has been applied successfully to various =1 kel
functions such as linear-discriminant functions, MLP (multi-laye
perceptron), DTW (dynamic time warping) [2] and HMM (hid-
den Markov models) [3]. Since the MCE learning tries to mini-
mize a loss function that corresponds to the number of classifica- od) = 1 . )
tion error for given training data set, it still suffers from a problem 1+ e—¢€(d+6)

'HereA = {A1,As,--- ,Ac} andé(d) is a smooth loss function,
for which the following sigmoid function is typically used



1( ) in (4) is an indicator function which has value of one when 4. APPLICATION TO NEURAL
the argument is true and zero otherwise. NETWORKS

In order to minimize the objective function of (4), the well-known
gradient descent methain be applied and the set of parametehe proposed modified MCE (mMCE) learning given in (8) can
of each discriminant function is adapted by the following rule: be applied to arbitrary discriminant functions that are twice differ-
AGHD —A® EVLO(A(t)IX) ©) entiable. In the present study, multi-layer perceptron type neural
network is employed to evaluate the performance.
whereA® denotes the parameter set at thi iteration anck

. .. ini D -(m) (m)
denotes the learning parameter of a positive small value. For thep-th training datax, € R7, leti,;" ando,;” be the

input and output of thg-th cell of layerm respectively. Then the
If one employs an expected cost functiifif(d(x))] instead of input value of thej-th cell of layerm is given by
the empirical cost functiofio (A|X) of (4), the parameter updat-

ing rule which is called Generalized Probabilistic Descent (GPD) S _ el (mym—1) (m—1) (m)
is given by 2% Z wj; Oy +0; . (11)
i=1
AU = A _ o Uv(dy (x)). @ N
HereU is a positive-definite matrix ang is a small positive real Herew;; Is the connection weight t(;et)ween theh cell of
number. layerm and thei-th cell of layerm — 1, 6;™’ is a constant and

n.m, represents the number of cells in Iayzer The output of each
cell is given by

3. MODIFICATION OF THE MCE
LEARNING o™ = F(i{™) (12)

where f( ) is a sigmoid function. In the classical error back-
Asis shownin (4), the MCE/GPD learning basically tries to mini-propagation (EBP) training [8], the object function, which is de-

mize an empirical error [4]. Therefore, the MCE learning schemgned on the basis of least squared error (LSE), is given by
suffers from the problem of over-fitting to the training dataset as it

is with other training schemes. McDermott and Katagiri [2] pro- 1 3
posed a method to adapt the slope paranggte(s) to preventthe Esq = 5 Z Z ( pk — 0, ) ) (13)
over-fitting effect. One of the drawbacks of this approach is that p=1 k=1

the relationship betweehand the shape of decision boundary in.

in which three-layer network is assumed apg denotes desired
the feature space is not clear.

output for thek-th output cell against the-th inputx,,.

In the present study, in order to improve generalization perfog On the other hand, in the proposed mMCE, the objective function
mance more directly than the previous method, a regularization D defined as follows

technique [5] has been employed. In regularization, a penal y
term F'(A) which is called a regularizer is added to the original _

objective function and the the new objective functiof\ ) is give ~ L(A|X) = Z Lop(A|X) + 7P Z Z Fpi(A|X), (14)
by p=1 i=1
L(A|X) = Lo(A|X) +vF(A). (8)  where
The regularizer works as an constraint in the optimization prob- ng
lem, and it conveys a priori knowlegde about the target function Lop(A) = Zf(di (xp))1(xp € Ci), (15)
that is to be learnt. i=1
) . i 1 & .
Tikhonov and Arsenin [5] proposed the class of Tikhonov regu- Fpu(A) = > (w](ff)(w](fl)) £ I(j))) . (18)
larizers, whose form is given by k=1
1 R b dy 2
=3 ;/a b () <$> da (9)  The weight updating rule is given by
in which z, y denote the input, output variable, respectively, and Aw@;,m—m - 9Loy (A)1 + oF, . (7)
h.(z) > 0forr=0,...,R—1andhg(z) > 0. " ow™m Y gwi Y

In the present study, as a simple case of the Tikhonov regularizém, the output layer whergr = 3,
we have employed the following empirical penalty term given in
[6], [7], which is

¢ P D oL ad (Xn) )

ngX) % — ¢ (di(x ) oP1(x, € CY), 18

F(A]X) = QPZZZ< . ) (10) 2w (d (3p)) — 55— RO (x, €CY),  (18)
k=1 p=1 i=1 or

wherex, = (zp1,Tp2,...,Tpp) represents the-th training 5 (13”2) = (21)f"( (2))kai7 (19)
w,; .

data inD dimensional space.



where e .
Table. 1 Correct classification rates [%)] in two-class prob-

lems

n2

Quii = Y wig w1 (0. (20) Method
J'=t Dataset Bayes|{NN/|[ NN/ | NN/
In the hidden layer whera, = 2, | #samples ML |EBP|MCE| mMCE
o Cancer training 420( 95.0 ({99.3| 97.8| 96.3
dLop :i OL, 52 L) 1) oy testing 279 95.7 |91.8 92.5| 94.6
ow = \ai® 9i® House|training 265 98.3 |99.6| 98.5| 98.5
OF 1 (o o o1 o2 testing 170 96.4 |95.3) 98.2| 99.4
awé}) =3 (25ii'f (i Jwij ' + w55 Sonar |training 141 100.0|98.6/ 98.6| 90.1
i , testing 67 74.6 |79.1] 86.6| 92.5
[0 =2,GEN 7" = 27 G5
ng
> wi? Qprs. (22) 100
k=1

Hereé;;: is the Kronecker delta.

5. EXPERIMENTS

Performance evaluation was conducted on several types of
datasets in UCI machine learning repository [9] and ATR speech

Correct classification rate [%)]

database [10]. nr

In order to compare the performance of the proposed method 70 . . .

with other learning methods, the EBP based neural networks, 0.01 0.1 1 10 100
the original MCE based neural networks, and Bayes discriminant g

functions where a single normal distribution (full covariance) is
assumed for each category were applied on the same datas%ﬁsgure. 1: Classification performance for the test-set “can-
Three-layer feed-forward neural networks were employed for the ¥ ~. t fthe sl in (5

experiments, the parametgiin (8) was set to 0.01 and the slope cer” in terms of the slope parametem (5)

parameteg in (5) was set to 1.0.

Since the MCE and mMCE learning are computationally expen-

sive, the initial parameters used in the parameter updating rule bf multi-layer neural networks, it is well-known that the number

(6) were set to the one obtained by the EBP learning. of hidden nodes affects the generalization performance. The clas-
sification performance for the test-set “cancer” with respect to the
number of hidden nodes is shown in Fig. 3. Although the perfor-

A. Results for Two-Class Problems mance varies with the number of hidden nodes, mMCE always
shows better performance than the original MCE.

Preliminary experiments were, at first, performed for two-class
problems on the UCI datasets “cancer”, “house” and “sonarg Results for speech data
Each dataset was divided into two groups, one was used for train-

ing and the other was used for testing.
g g In order to evaluate the performance for speech recognition,

The experimental results are summarized in Table 1. It can tspeech database “isolet” (isolated alphabet letters) of the UCI
seen that mMCE gives better test-set performance than the origépository, and “vowels” (Japanese five vowels) made of the ATR
nal MCE for each dataset. continuous speech database “Set-B” were collected. In the “iso-

Fig. 1 shows the correct classification rates in terms of the slope
parametet in (5). Although¢ influences the correct classifica-
tion rate, mMCE performs better than MCE for any valug of Table. 2 Speech datasets and network architecture

'd” Ehe f_ram?k‘]"’ork of regu:ariza@ior?t,_ itis stil a;t‘?pe(g)m%'e_rt“ 0" Dataset || #classes #attributes| #hidden nodes
etermine the appropriate weighting parametdn (8). As i -
can be seen in Fig. 2 where classification performance in terms isolet(UCI) 26 617 32

of the parameter is shown, the classification performance is not_YOWeIS(ATR) S 12 12
sensitive to the the parameter
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Table. 3 Correct classification rates [%] for speech

datasets
Method

Dataset Bayes/ NN/ | NN/ | NN/
| #samples | ML |EBP|MCE|mMCE
isolet(UCI) |training 6238 - 93.4| 96.9| 96.2
testing 1559 - |94.3/ 95.5| 96.4
vowels(ATR)| training 400Q| 86.3 |89.0| 92.7| 91.7
testing 100Q 79.3 |82.1| 88.6| 89.1

fied Tikhonov type regularizer, which takes the power of the sec-

Figure. 2: Classification performance for the test-set “canond derivatives of the discriminant functions, has been employed

cer” as a parameter of
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Figure. 3: Correct classification rate as a parameter of the

number of hidden nodes (“cancer”)

let” database, the data file “isolet1+2+3+4” was used for training

35

40

as a regularizer in the present study. It should be noted that the
employed regularizer is not case specific but general, apart from
neural networks, the proposed modified MCE (MMCE) learning
can be applied to various type of recognizers like HMM (hidden
Markov models) and so on.
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