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ABSTRACT significant error rate reduction is achieved by combining the two
techniques.

This paper describes intensity and location normalization tech-

nigues for improving the performance of visual speech recogniz- 2. INTENSITY NORMALIZATION

ers used in audio-visual speech recognition. For auditory speech

recognition, there exist many methods for dealing with channéMN (Cepstral Mean Normalization) [4] is the simplest feature-
characteristics and speaker individualities, e.g., CMN (cepstr@gsed normalization technique that is used mainly to counteract
mean normalization), SAT (speaker adaptive training). We prese#tannel effects. In order to normalize the variation of the inten-
two techniques similar to CMN and SAT, respectively, for in-Sity of lip images, the mean intensity over the image sequence is
tensity and location normalization in visual speech recognitiorsubtracted from each pixel value in the frames in a similar manner
Word recognition experiments based on HMM show that a sig?f CMN, that is, the value of the pixel at locati¢m, y) in frame
nificant improvement in recogniton performance is achieved by after normalization is given by

combining the two techniques. T x v
= 1
It(x,y)ZIt(x,y)—mZZZIt(x, y) (D)
t=1 z=1 y=1

It has been shown that the image sequence of lips as well ¥derel;(z,y) is the value of the pixel at locatidfx, y) in frame
acoustic speech signal plays an important role for improving thie ' is the number of frames in the image sequence,andY” is
speech recognition performance, especially in noisy environmeri€ size of each lipimage. Although this approach does not solve
[1]. One of the difficulties in visual speech recognition is the exall problems of lighting variation, e.g., lighting direction, it can
traction of feature parameters from the image sequence of lip§Prove recognition performance significantly in the case where
Methods to extract speech information from image sequences a¥dbsampled image is used as feature vector as shodufi.in
largely categorized into two approaches: model-based approach
(e.g., [2]) and image- or pixel-based approach (e.g., [3]). Inthe 3. LOCATION NORMALIZATION
model-based approach, a contour model of lips is first constructed,
and it is represented by a small number of parameters. Althougin inherent difficulty of speaker independent speech recognition
the advantage of this approach is that the parameters have lessiinthat the resulting statistical models, i.e., HMMs, have to con-
fluence of variability of lighting condition, lip location, rotation, tend with a wide range of variation in the speech parameters caused
and scaling, it has a difficulty in the construction of a robust antdy inter-speaker variability. As a result, the distributions of dif-
efficient lip contour model which can locate and track lips. Orferent classes overlap each other, and the discriminatory capabil-
the other hand, in the image-based approach, pixel values of thies of the statistical model may be reduced. In order to avoid
image are preprocessed and then used as the feature vector. Htivis problem, SAT (Speaker Adaptive Training) [7], a normalized
ever, this process must take account of the variability of lightingraining technique, in which speaker normalization was integrated
condition, lip location, rotation, and sacaling. in the model training, was developed for auditory speech recog-
nition. In SAT, a set of transformations for normalizing each of

In auditory speech recognition, there exist many techniques f@faining speakers and the parameters of the HMMs are jointly es-
dealing with variability of channels and speakers, e.g., CMN (CeRimated.

stral mean normalization) [4], MAP adaptation [5], MLLR [6]

and SAT (speaker adaptive training) [7]. Our approach to vitWe assume that the mouth part is extracted from the face image
sual speech recognition is based on the success of the normsgquence by using some region extraction algorithm. However,
ization approaches for auditory speech recognition. In this papehe extracted region is considered to have some degree of varia-
we present a simple technique for normalizing average intensition of location. If the HMM is trained with such a variation of

of the image sequence and a location-normalized training teclocation, an HMM with a large variance might be obtained as in
nique, similar to CMN and SAT, respectively. Word recognitionthe case of speaker independent model training. Therefore, we
experiments based on HMM (hidden Markov model) show thgbropose a normalized training technique similar to SAT, which

1. INTRODUCTION



integrates the location normalization for each utterance into the o

model training. For the location-normalized training, it is nec- . E :”[’J‘r’n:‘;:zm;‘:::""” o 835
cessary to jointly estimate the best lip location for each utterance 86.5 ;
and the parameters of the HMMs. In a similar manner of SAT, an .
iterative approach is adopted in which one of these set of param- € o
eters (the lip locations and the HMM parameters) is estimated at % . 823
each stage and the maximum likelihood estimation is used indi- g L2
vidually for each set of parameters assuming the other parameters “ w0
are fixed. Thus the training algorithm iterates the following pro- 8l ot
cedure several times: e
5x5 10x5 20x5

block size

(a) Location Normalization
For each training utterance, find the best lip location in
the sense that its likelihood is the highest for the current
HMM.

(b) Model Update 95
Update the HMMs by the Baum-Welch re-estimation algo- g 06w ""If’""‘"iz"‘“‘)”
rithm using all training utterances having the best location. * W romaliation

Figure 1: Effect of intensity normalization. (subsampling)

%
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In the testing, to get the likelihood values of an utterance for all
HMMs, procedure (a) is applied for all HMMs, and the model
which gives the highest likelihood is chosen as the recognition
result. We assume that the lips does not move very much during

one utterance. In the procedure (a), the likelihood is measured o e6.7 677

80 2 79.2

Recognition rate

75

by the Viterbi algorithm. To obtain the best location avoiding a o
large amount of computation required for the exhaustive search, 3x4 GxﬂZD_Dcixclfemdenlfxle 15x20
we apply the following sub-optimum search procedure to each

rance:. . . . N -
utterance Figure 2: Effect of intensity normalization. (DCT coefficients)
Step 0. Given an initial guess for the location of the region con-

taining the lips.

Step 1. In total 8 kinds of lip image sequences are extracted frorff PiX€ls from the image were defined as one block, and the aver-

the original face image sequence by shifting the region 1g9e value of the pixels in each plc_nck was considered to represent
be extractedt L pixels inz andy directions. the block. In 2D-DCTk x [ coeﬁlgle_:nts were ex_tracted from the
L . lower order of the 2D-DCT coefficients. Both in the above sub-
Step 2. From the 8 hp Image sequences th_racted in step 1 ary mpling and 2D-DCT, the vectors of each frame (static parame-
the lcurt:ent lip ||r_na_ge sequence, 9 Ilphlmagl_ekslgk(]]uen(_:esh{grs) and the difference between succesive two frames (delta pa-
tho_ti’ ¢ ?Osﬁ al_:f\)/lll\r;lage sequence whose likelihood is ¢ Fameters or dynamic feature parameters) were combined to form
ighest for the ) the final feature vectdr.Experiments of word recognition by us-
Step 3. If the lip image sequence chosen in step 2 is the curreftqy continous density HMMs were performed. Each word class
lip image sequence, go to step 4. Otherwise the chosgfias modeled by an HMM which is left-to-right model with 5

lip image sequence is used as the new current lip imaggates. Each state has a single Gaussian distribution with diag-

sequence and go to step 1. onal covariance.
Step 4. If L = 1, stop. Otherwise sef «+ |L/2| and go to
step 1. For the experiments, the Tulips1 database [3] was used, which is a

bimodal database consisting of lip image sequences and acoustic

When we cannot obtain pixel values of outside area of the initigiPeech signals of 9 males and 3 females, in total 12 speakers.

lip images, the pixel value obtained by shifting the region to b&ach speaker pronounces the English numbers, one, two, three
extracted is given by and four, each twice. The visual frame rate is 30 frame/s and each

N frame is al00 x 75 pixel image. The database reflects a large
Ie(z,y) = I((z —u) mod X, (y —v) modY)  (2) yariety of lip locations and lighting conditions. We performed
wherel,(z,y) is the value of the pixel at locatigfx, ) in frame  speaker independent word recognition tests using the “leave-one-
t of the initial lip image sequencéy, v) is the amount of dis- out method”. In the method, one of 12 subjects was used for
placement and x Y is the size of the lip region to be extracted.testing and the remaining 11 subjects were used for training. This
was repeated 12 times, leaving out a different subject each time.

4. EXPERIMENTS The initial value of ‘L” was set to 10.

Two kinds of feature vectors, subsampled image and two- iprejiminary experiments showed that the the use of delta parameters
dimensional DCT (2D-DCT) coefficients, were used in these exn addition to the static parameters is effective: error rate reduction of

periments. In the sub-sampling, for the dimension reductior,  about 60% was achieved for subsampled image



For the block size of x 5, a recognition rate of 94.8% and an
error rate reduction of 61% were achieved. This implies 76%
reduction in error rate compared with the case without intensity
and location normalization. From the fact that the recognition
rates for the same task by using other methods [3], [2] were about
90%, the effectiveness of the proposed normalization technique
can be confirmed.

Recognition rate
©
o

From the point of view that the location normalization was more

L effective for smaller block size of subsampling, it is understood
8 - that it is effective to use a feature vector with some degree of
normalization iterations higher spatial resolution when we apply the location-normalized
training. On the other hand, the location-normalization did not

Figure 3: Effect of location-normalized traning. (subsampling) improve the recognition rate for 2D-DCT significantly. This co-
incides with the fact that 2D-DCT reduces the spatial resolution.

Fig. 5 shows the obtained models with or without location-
normalized training. This figure shows the values of the mean
vectors and the variances (i.e., diagonal covariances) represented

2 by gray levels. As seen in Fig. 5, the images representing the
5 mean vectors become sharp after location-normalized training and
E» the values of the variances after this process are smaller than those
& before it. Therefore it means that a better class separation can be

70 —O— 6x8 —@— 12x16 obtained.

¢ 671 —0O— 9x8 —@— 15x20
o 5. CONCLUSIONS
normalization iterations

In order to improve visual speech recognition performance, we
Figure 4: Effect of location-normalized traning. (DCT coeffi- proposed two techniques for normalization of lighting condition
cients) and lip location. The recognition performance is significantly im-
proved by combining the two techniques: a recognition rate of
94.8% and an error rate reduction of 76% were achieved. It was
4.1. Intensity Normalization also shown that for the location normalization it is effective to use
a feature parameter with some degree of higher spatial resolution,
Experimental results of intensity normalization are shown i¢.g., nearly the raw pixels.
Figs. 1 and 2. It can be seen that the intensity normalization is . o ) . )
effective for subsampled image: recognition rate of 88.5% an_'&he_normal_lzed trammg_techmque wlll be exten_ded fpr norma}llz-
the error rate reduction of 35% were achieved for the block sizZ89 lip rotation and scaling. Integration of the visual information
of 20 x 5. On the other hand, the effect was not significant fof© auditory information will also be a future work.
2D-DCT coefficients while 2D-DCT coefficients achieved a high
recognition rate of 89.6% without the intensity normalization. It 6. ACKNOWLEDGEMENT
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Figure 5: Location-normalized training for a model /one/.
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