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ABSTRACT

This paper describes intensity and location normalization tech-
niques for improving the performance of visual speech recogniz-
ers used in audio-visual speech recognition. For auditory speech
recognition, there exist many methods for dealing with channel
characteristics and speaker individualities, e.g., CMN (cepstral
mean normalization), SAT (speaker adaptive training). We present
two techniques similar to CMN and SAT, respectively, for in-
tensity and location normalization in visual speech recognition.
Word recognition experiments based on HMM show that a sig-
nificant improvement in recogniton performance is achieved by
combining the two techniques.

1. INTRODUCTION

It has been shown that the image sequence of lips as well as
acoustic speech signal plays an important role for improving the
speech recognition performance, especially in noisy environments
[1]. One of the difficulties in visual speech recognition is the ex-
traction of feature parameters from the image sequence of lips.
Methods to extract speech information from image sequences are
largely categorized into two approaches: model-based approach
(e.g., [2]) and image- or pixel-based approach (e.g., [3]). In the
model-based approach, a contour model of lips is first constructed,
and it is represented by a small number of parameters. Although
the advantage of this approach is that the parameters have less in-
fluence of variability of lighting condition, lip location, rotation,
and scaling, it has a difficulty in the construction of a robust and
efficient lip contour model which can locate and track lips. On
the other hand, in the image-based approach, pixel values of the
image are preprocessed and then used as the feature vector. How-
ever, this process must take account of the variability of lighting
condition, lip location, rotation, and sacaling.

In auditory speech recognition, there exist many techniques for
dealing with variability of channels and speakers, e.g., CMN (cep-
stral mean normalization) [4], MAP adaptation [5], MLLR [6]
and SAT (speaker adaptive training) [7]. Our approach to vi-
sual speech recognition is based on the success of the normal-
ization approaches for auditory speech recognition. In this paper,
we present a simple technique for normalizing average intensity
of the image sequence and a location-normalized training tech-
nique, similar to CMN and SAT, respectively. Word recognition
experiments based on HMM (hidden Markov model) show that

significant error rate reduction is achieved by combining the two
techniques.

2. INTENSITY NORMALIZATION

CMN (Cepstral Mean Normalization) [4] is the simplest feature-
based normalization technique that is used mainly to counteract
channel effects. In order to normalize the variation of the inten-
sity of lip images, the mean intensity over the image sequence is
subtracted from each pixel value in the frames in a similar manner
of CMN, that is, the value of the pixel at location(x; y) in frame
t after normalization is given by
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whereIt(x; y) is the value of the pixel at location(x; y) in frame
t, T is the number of frames in the image sequence, andX�Y is
the size of each lip image. Although this approach does not solve
all problems of lighting variation, e.g., lighting direction, it can
improve recognition performance significantly in the case where
subsampled image is used as feature vector as shown in4.1.

3. LOCATION NORMALIZATION

An inherent difficulty of speaker independent speech recognition
is that the resulting statistical models, i.e., HMMs, have to con-
tend with a wide range of variation in the speech parameters caused
by inter-speaker variability. As a result, the distributions of dif-
ferent classes overlap each other, and the discriminatory capabil-
ities of the statistical model may be reduced. In order to avoid
this problem, SAT (Speaker Adaptive Training) [7], a normalized
training technique, in which speaker normalization was integrated
in the model training, was developed for auditory speech recog-
nition. In SAT, a set of transformations for normalizing each of
training speakers and the parameters of the HMMs are jointly es-
timated.

We assume that the mouth part is extracted from the face image
sequence by using some region extraction algorithm. However,
the extracted region is considered to have some degree of varia-
tion of location. If the HMM is trained with such a variation of
location, an HMM with a large variance might be obtained as in
the case of speaker independent model training. Therefore, we
propose a normalized training technique similar to SAT, which



integrates the location normalization for each utterance into the
model training. For the location-normalized training, it is nec-
cessary to jointly estimate the best lip location for each utterance
and the parameters of the HMMs. In a similar manner of SAT, an
iterative approach is adopted in which one of these set of param-
eters (the lip locations and the HMM parameters) is estimated at
each stage and the maximum likelihood estimation is used indi-
vidually for each set of parameters assuming the other parameters
are fixed. Thus the training algorithm iterates the following pro-
cedure several times:

(a) Location Normalization
For each training utterance, find the best lip location in
the sense that its likelihood is the highest for the current
HMM.

(b) Model Update
Update the HMMs by the Baum-Welch re-estimation algo-
rithm using all training utterances having the best location.

In the testing, to get the likelihood values of an utterance for all
HMMs, procedure (a) is applied for all HMMs, and the model
which gives the highest likelihood is chosen as the recognition
result. We assume that the lips does not move very much during
one utterance. In the procedure (a), the likelihood is measured
by the Viterbi algorithm. To obtain the best location avoiding a
large amount of computation required for the exhaustive search,
we apply the following sub-optimum search procedure to each
utterance:.

Step 0. Given an initial guess for the location of the region con-
taining the lips.

Step 1. In total 8 kinds of lip image sequences are extracted from
the original face image sequence by shifting the region to
be extracted�L pixels inx andy directions.

Step 2. From the 8 lip image sequences extracted in step 1 and
the current lip image sequence, 9 lip image sequences in
total, choose a lip image sequence whose likelihood is the
highest for the HMM.

Step 3. If the lip image sequence chosen in step 2 is the current
lip image sequence, go to step 4. Otherwise the chosen
lip image sequence is used as the new current lip image
sequence and go to step 1.

Step 4. If L = 1, stop. Otherwise setL  bL=2c and go to
step 1.

When we cannot obtain pixel values of outside area of the initial
lip images, the pixel value obtained by shifting the region to be
extracted is given by

Ît(x; y) = It((x� u) mod X; (y � v) mod Y ) (2)

whereIt(x; y) is the value of the pixel at location(x; y) in frame
t of the initial lip image sequence,(u; v) is the amount of dis-
placement andX � Y is the size of the lip region to be extracted.

4. EXPERIMENTS

Two kinds of feature vectors, subsampled image and two-
dimensional DCT (2D-DCT) coefficients, were used in these ex-
periments. In the sub-sampling, for the dimension reduction,m�
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Figure 1: Effect of intensity normalization. (subsampling)
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Figure 2: Effect of intensity normalization. (DCT coefficients)

n pixels from the image were defined as one block, and the aver-
age value of the pixels in each block was considered to represent
the block. In 2D-DCT,k � l coefficients were extracted from the
lower order of the 2D-DCT coefficients. Both in the above sub-
sampling and 2D-DCT, the vectors of each frame (static parame-
ters) and the difference between succesive two frames (delta pa-
rameters or dynamic feature parameters) were combined to form
the final feature vector.1 Experiments of word recognition by us-
ing continous density HMMs were performed. Each word class
was modeled by an HMM which is left-to-right model with 5
states. Each state has a single Gaussian distribution with diag-
onal covariance.

For the experiments, the Tulips1 database [3] was used, which is a
bimodal database consisting of lip image sequences and acoustic
speech signals of 9 males and 3 females, in total 12 speakers.
Each speaker pronounces the English numbers, one, two, three
and four, each twice. The visual frame rate is 30 frame/s and each
frame is a100 � 75 pixel image. The database reflects a large
variety of lip locations and lighting conditions. We performed
speaker independent word recognition tests using the “leave-one-
out method”. In the method, one of 12 subjects was used for
testing and the remaining 11 subjects were used for training. This
was repeated 12 times, leaving out a different subject each time.
The initial value of “L” was set to 10.

1Preliminary experiments showed that the the use of delta parameters
in addition to the static parameters is effective: error rate reduction of
about 60% was achieved for subsampled image
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Figure 3: Effect of location-normalized traning. (subsampling)
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Figure 4: Effect of location-normalized traning. (DCT coeffi-
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4.1. Intensity Normalization

Experimental results of intensity normalization are shown in
Figs. 1 and 2. It can be seen that the intensity normalization is
effective for subsampled image: recognition rate of 88.5% and
the error rate reduction of 35% were achieved for the block size
of 20 � 5. On the other hand, the effect was not significant for
2D-DCT coefficients while 2D-DCT coefficients achieved a high
recognition rate of 89.6% without the intensity normalization. It
is considered that 2D-DCT coefficients are robust to the variation
of average intensity since the change of average intensity does
not affect the values of 2D-DCT coefficients except for(0; 0)-th
coefficient.

For subsampled image, a large block size of20� 5 gave the best
recognition rate, and for 2D-DCT, the relatively small number of
coefficients of6� 8 gave the best recognition rate. They are con-
sidered because the use of a large block size or a small number of
2D-DCT coefficients give a rough spatial resolution which results
in less influence of variation of lip location.

4.2. Location Normalization

Figs. 3 and 4 show the results of applying location normalization
in addition to intensity normalization. Iteration “0” indicates the
result of recognition in which location normalization of test data
was carried out whereas the location-normalized training was not
applied to the HMMs.

For the block size of5 � 5, a recognition rate of 94.8% and an
error rate reduction of 61% were achieved. This implies 76%
reduction in error rate compared with the case without intensity
and location normalization. From the fact that the recognition
rates for the same task by using other methods [3], [2] were about
90%, the effectiveness of the proposed normalization technique
can be confirmed.

From the point of view that the location normalization was more
effective for smaller block size of subsampling, it is understood
that it is effective to use a feature vector with some degree of
higher spatial resolution when we apply the location-normalized
training. On the other hand, the location-normalization did not
improve the recognition rate for 2D-DCT significantly. This co-
incides with the fact that 2D-DCT reduces the spatial resolution.

Fig. 5 shows the obtained models with or without location-
normalized training. This figure shows the values of the mean
vectors and the variances (i.e., diagonal covariances) represented
by gray levels. As seen in Fig. 5, the images representing the
mean vectors become sharp after location-normalized training and
the values of the variances after this process are smaller than those
before it. Therefore it means that a better class separation can be
obtained.

5. CONCLUSIONS

In order to improve visual speech recognition performance, we
proposed two techniques for normalization of lighting condition
and lip location. The recognition performance is significantly im-
proved by combining the two techniques: a recognition rate of
94.8% and an error rate reduction of 76% were achieved. It was
also shown that for the location normalization it is effective to use
a feature parameter with some degree of higher spatial resolution,
e.g., nearly the raw pixels.

The normalized training technique will be extended for normaliz-
ing lip rotation and scaling. Integration of the visual information
to auditory information will also be a future work.
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