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ABSTRACT

Discriminative training is a powerful tool in acous-
tic modeling for automatic speech recognition. Its
strength is based on the direct minimisation of the
number of errors committed by the system at recogni-
tion time. This is usually accomplished by defining an
auxiliary function that characterises the behaviour of
the system, and adjusting the parameters of the sys-
tem in a way that this function is minimised. The
main drawback of this approach is that a task spe-
cific training database is needed. In this paper an
alternative procedure is proposed: task adaptation
using task independent databases. It consists in the
combination of acoustic information—estimated using
a general purpose training database—, and linguistic
information—taken from the definition of the task—.
In the experiments carried out, this technique has led
to great improvement in the recognition of two differ-
ent tasks: clean speech digit strings in English and
dates in Spanish over the telephone wire.

1 INTRODUCTION

One of the most appealing features of sub-word based
continuous speech recognition (CSR) is that the
acoustic models can be trained using a general pur-
pose speech database, instead of requiring a task spe-
cific one. The underlying assumption is that any word
may be seen as the concatenation of small sub-lexical
units independent of the context they are in, either
because this context is explicitly modelled—when con-
text dependent units are used—or because its effects
are discarded—using context independent ones—. In
any case, and because of this independence, any speech
database where the different sub-lexical units are cor-
rectly represented suffices to train the acoustic mod-
els. Recognition of any task only requires then the
knowledge of how the sentences allowed by the task
are represented as a function of these units.

Discriminative training (DT') of sub-lexical unit mod-
els for CSR is a major challenge in acoustic modelling.
This is so because most DT implementations proposed
so far rely on the optimisation of the performance of
the system at recognition time. While this optimisa-
tion is quite straightforward for task specific systems—
those where the acoustic models are trained using a
task specific speech database—, it is rather more cum-
bersome when the task is not known at training time or
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only a general purpose database is available. In these
last cases, a sub-lexical units based CSR framework
must be used. The main problem in applying DT to
this kind of system is that its behaviour at recognition
time cannot be accurately represented. One way to
overcome this drawback consists in increasing the dis-
crimination between the different sub-lexical units in
a grammar free environment, and expect that this in-
creased discriminative strength results in an improve-
ment of the performance in no matter which task. Sev-
eral such frameworks—which are referred to as task
independent DT—have been proposed recently [2, 4],
leading to notorious improvements in the performance
of CSR systems. Nevertheless, this approach does not
take any profit of the task definition when it is known
but a task specific database is not available. In this pa-
per we consider the utility of embedding the knowledge
about the task characteristics in our previously pro-
posed task independent DT framework [4]—minimum
confusibility training (MCT)—in order to focus it to
the minimisation of the errors that may actually be
involved when a task is to be recognised.

2 TASK ADAPTATION USING
MCT ON SHORT CHAINS OF
SUB-LEXICAL UNITS

Grammar free sub-lexical units recognition and task
specific recognition represent rather different situa-
tions. While in the first acoustic modelling is deter-
minant, in task specific recognition, the grammar may
prevail in many of the cases. For instance, using maxi-
mum likelihood (ML) trained HMM’s, the phone error
rate recognising TIDIGITS is some 40%. If the gram-
mar of the task—strings of digits—is used, this rate
falls below 2% with the same acoustic models. This
drastic reduction in the phone error rate represents
that most of the phone units will be correctly recog-
nised or forced to be so by the grammar of the task.
In this situation, it will usually be likely to find chains
of one or more units correctly recognised. These cor-
rectly recognised segments enable us to consider each
lexical error as the concatenation of correctly and in-
correctly recognised segments. Moreover, if a segment
of two or more units is correctly recognised, we can
expect that not only the recognised transcription will
be correct, but also the points where the transition be-
tween units will occur. For instance, let’s consider the
confusion between digits ‘five’ and ‘nine’. The tran-
scription in acoustic units of both words is [ ay v]
and [n ay n], respectively. The presence of a com-
mon central unit has an isolating effect between the
initial and final segments. We can consider that this



lexical error requires, to be committed, that at least
one of two segmental errors is possible: either [ ay]
for [n ay], or [ay n] for [ay v]. Moreover, we
can expect that the possibility of confusing [f ay]
with [n ay] will not depend on the possibility that
[ay n] is confused with [ay v]. This consideration
led the authors to the proposal of a segmental DT
approach where short chains of sub-lexical units are
taken as training material [4].

Segmental DT using short chains of sub-word units
represents a tradeoff between training availability and
CSR errors representation. Each utterance in the
training database is divided into segments of a few
units. Each of these segments is then used as if it were
an utterance completely independent of the rest. An
N-Best search is performed on each segment requir-
ing that the initial and final units of the segment are
correctly recognised. By fixing the recognition of the
extreme units we ensure that the method is little influ-
enced by the segmentation in units of each sentence,
so a maximum likelihood forced recognition is enough
to determine this alignment. There is a compromise
in the length of the segments between the availabil-
ity of training material, inversely proportional to their
length, and their ability to characterise actual CSR er-
rors, which grows with it. In our experiments, a value
of five phones was used.

Besides, and considering the same example as above,
it must be remarked that it is not necessary that both
errors are possible. If just one of the segments would
be misrecognised by itself, the commission or not of the
lexical error will depend on the ability of the system
to reject the wrong hypothesis for the other segment.
Moreover, only the protection against the commission
of these two sub-lexical errors intervenes in the possi-
bility that ‘five’ and ‘nine’ are confused. It does not
matter much if there are other sub-lexical errors more
prone to be committed. For instance, [m ay] is much
more prone to be confused with [n ay] than [ ay],
but it does not participate in the confusion between
‘five’ and ‘nine’ or any other digit. In this situation
we found that minimum classification error or maxi-
mum mutual information training was not suited for
CSR because they focus mainly on the reduction of
the possibility of committing the most likely confusion
for each utterance. We proposed instead the use of a
minimum confusibility training (MCT) approach [4].

We define the confusibility of a system as the expected
number of errors that it is possible to commit in the
recognition of a task. This means that each utterance
contributes to the global confusibility of the system
as many times as the number of different sentences in
the grammar of the task whose likelihood is superior
than that of the uttered one. Our purpose is to for-
mulate a task dependent confusibility measure of the
system using a general purpose phonetically balanced
training database and the knowledge of the grammar
of the task. The main idea is to learn the acoustic
characteristics from the training database and, taking
into account which are the errors allowed by the task
grammar, adapt the parameters of the system in such a
way that this measure is reduced. In order to do so, we
first consider the case in which the training database
has enough utterances of each possible sentence of all
possible tasks in a given language. As all tasks are
completely represented, it is possible to consider only

those utterances belonging to the task being optimised
and then performing task dependent MCT on them.
As the frequency of appearance of the sentences of the
task may be different in the training database and the
task, the formulation of the confusibility must take
this fact into account.

2.1 Task Dependent Confusibility For-

mulation

Let’s be A the parameters of the system being opti-
mised; W, the grammar of the task; and =z, € X,
the nth utterance in the training database. As the
lexical contents of the utterance must be known in ad-
vance to performing DT, we shall refer to z!, denoting
a utterance correspondlng to word w; in the vocab:
ulary of W'. Being g;(z%) = logPr(z,07/);) the
log-likelihood of utterance n along its best path, ©7,
through the acoustic model of word j, A;, we define the

possibility of committing error [w; — wj; ] for ¥, as:

i, _ 1 g]( ) > gz( )
Piy(A) = { 0 otherwise. (1)
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Where Equation 2 is used instead of Equation 1 in
order to guarantee continuity—necessary to allow a
gradient-descent optimisation procedure—. The shape
of this function is essentially the same as the sigmoid
used in [2], but leading to a more compact notation,
and it is only controlled by Gy. If this value is close to
zero, Equation 2 will behave as a hard limiter. If a high
value is taken, then the function will almost be linear.
In our implementation, we use the standard deviation
of g; — g; for the two first hypotheses of each utterance
in the whole population. In this way, we ensure that
Equation 2 will be nearly linear for the errors with
likelihood closest to that of the correct transcription—
those which are the most easily removed by the DT
algorithm—, while limiting the effects of the extreme
ones.

We define the utterance confusibility of ¥, as the num-
ber of erroneous hypotheses allowed by the grammar
of the task with higher likelihood than the correct one,

ZP (wi = w;] € W)
i#i (3)

Where the 1([w; = w; ] € W) function returns one if
the grammar of the task allows the confusion between
w; and wj, and zero otherwise. Similarly, the class
confusibility is defined as the expected mean number of
possible errors for the utterances belonging to a given
word. So, being N; the number of times word w; ap-
pears in the training database:

. Zucw (A, W) (4)
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CCi(A, W) =

LAlthough the following development refers to words in a
vocabulary, it is simply a matter of convention. All results may
be applied equally to any kind of task substituting words for
sentences and vocabulary for grammar.



Finally, we shall refer to global confusibility or, simply,
confusibility, as the expected number of errors that the
system may commit:

GC(A, W) = fw (w;)CCi(A, W) (5)

Where fw (w;) is the frequency of appearance of word
w; in the task. Summing up Equations 1-5 we arrive

to:
=mey
A P

zi JFi

1((w; = w;] € W) (6)

Notice that this last expression mixes three different
kinds of information: acoustic information is used in
the term P (A), and only there; N; is the number

?,
of times each word in the task appears in the training
database; finally, fw (w;) and the explicit condition
1(Jw; = w;] € W), refer to the vocabulary structure
of the task. Re-arranging the order of the summations
in Equation 5 we arrive to

)=y Yy AW )

@i i i (7)

Where p(w;, wj, W) = fw(w;)1([w; = w;] € W) is a
measure of the expected number of errors allowed by
the grammar if one w; is confused with w;. We shall
refer to to this measure as the relevance in W of error
[U)i — Wj ]

2.2 Task Adaptation Formulation Us-
ing Short Segments of Phones

Equation 7 already leads to a formulation of the
task dependent confusibility using a task independent
training database. Nevertheless the nature of this
database—it should be almost infinite to hold all pos-
sible tasks—makes its use un-affordable. Instead of
that, we can expect that the possibility that a lexical
error occurs will be a function of the possibility that
each of the segments intervening in it is confused. In
the above example, this means that the possibility of
confusing [f ay v] with [n ay n] will depend on
the possibility of confusing [f ay] with [n ay] and
[ay n] with [ay v]. In general, we will have an ap-
plication between the M x M space of all the possible
errors between the M different sub-lexical segments in
a language, Eg, into the N x N space of all possi-
ble errors between the N different words in the task,
Ew. The shape of this function will be, in general,
intricate, but there are two specially interesting situ-
ations where this function has a straight formulation:
if the lexical error only requires one segment to be
misrecognised, the possibility of committing the lex-
ical error will be exactly the possibility of confusing
this segment; besides, and due to the almost linear
behaviour of Equation 2 for arguments close to zero, if
the difference between the likelihood of the correct and
incorrect transcriptions for all the segments in which a

given lexical error is divided is close to zero, then the
possibility of committing the lexical error will approxi-
mately be the sum of the segmental possibilities. Thus,
being T the number of segments needed to commit er-

ror [w; = wj ], yk ; each of the segments in which z7,

is divided and sj the acoustic contents of each seg-
ment, we can express the possibility of committing er-
ror [w; — w; ] as:

ZPE,:‘SZ (8)

This expression is equivalent to considering that each
lexical error contributes to the global confusibility as
many times as the number of segments that need to be
confused to commit it. In this way, the minimisation
of the task dependent confusibility can be undertaken
in terms of the segments—what we actually have avail-
able in the training database—instead of the words in
the task.

ng)wZZZMM’RMM
yk jFk
p(Sk,Sj,W) ~ fEW([Sk - SJ]) (9)

Where sj, are all the different segments found in the
training database, Ng, the number of times these seg-
ments are present, an& the relevance given to each seg-
mental error [ s, — s;] is the frequency of appearance
of this segmental error in the N x N space Ew of all
possible errors in the task.

2.3 Simplified Calculation of the Rele-
vance

One useful simplification of Equation 9 is consider-
ing that the uttered string and the recognised one are
independent. This means that any segment of speech
may be confused with all the possible segments allowed
by the task. In this situation, the frequency of a given
segmental error will be the product of the frequency of
the uttered segment by the frequency of the recognised
one. These frequencies may be estimated in a variety
of ways, being the simplest the use of a stochastic lan-
guage model, such as N-gram’s. In our case, we use
the bigram.

Even in the case that the task grammar is not known,
this approximation provides a reasonable formulation
for task independent MCT. It consists in substituting
the language model of the task in the calculus of the
relevance with a language model of the language (En-
glish, Spanish, etc.). This last language model can be
seen as the model that would have a task involving all
possible tasks in the language and it seems a natural
choice for automatic dictation systems.

3 EXPERIMENTATION

In order to assess the effectiveness of task adaptation
using MCT on short phonetic segments, we have ap-
plied several DT strategies based on MCT on two dif-
ferent CSR tasks: English digit strings recognition and
Spanish dates recognition. In both cases, a maximum



likelihood framework using context independent phone
models is taken as baseline for the DT procedures. We
optimise the confusibility of this framework using seg-
ments of five phones where the extreme ones are re-
quired to be correctly recognised. An N-Best search
is performed on each segment of each utterance in the
training set to find the twelve maximum likelihood hy-
potheses which are then used to compute the gradient
of the confusibility. Finally, and using the algorithm
depicted in [5], a gradient descent search is performed
in order to minimise the confusibility of the system.
Three different kinds of informations are trained: the
transition and emission probabilities of the HMM’s,
and the weight each kind of parameter is given at each
state in a similar way to that proposed using ML in [1].
Four different discriminative training strategies were
tried and compared with the ML baseline (base):

inde Independent MCT: no knowledge from either
the language or the task is used.

lang Language dependent MCT: a bigram of phones
in the language is estimated from the training set
and used to estimate the relevance of each error.

task Task dependent MCT: a bigram of phones is
inferred from the definition of the task and used
in the estimation of the relevance of the errors.

mix3 The same framework as task but using the
result from lang as starting point.

3.1 English Digit Strings Recognition
The English digit strings recognition is mainly the
same experiment framework as that used in [4]: phone
4 states HMM’s are trained using the male part of
TIMIT and employed to recognise the unknown length
digit strings of the male test corpus of TIDIGITS. Ta-
ble 3.1 shows the results achieved at recognition, where
err stands for the digit error rate—the sum of inser-
tions (inse), deletions (dele) and substitutions (subs)
of digits—, goal for the percentage of correctly recog-
nised digits, and corr for the percentage of strings
correctly recognised.

| name err inse dele subs goal | corr |
base 2.7 0.8 0.8 1.1 981 | 92,5
inde 2.5 0.5 0.5 1.5 98.0 | 93.0
lang 2.2 0.6 0.5 1.1 984 | 94.0
task 2.3 0.7 0.6 1.0 983 | 93.6
mix3 1.8 0.5 0.4 09 98.7 | 94.9

Table 1: English digit strings recognition results.

The first remarkable thing about the results is that
all four DT frameworks improve the baseline one. The
best result is obtained when task adaptation is applied
to the best task independent framework (mix3). This
was the expected result and confirms that MCT based
task adaptation is a valuable tool in CSR. Language
adaptation has also proved to perform better than in-
dependent MCT. Although it would be expected that
task adaptation also performed better than language
adaptation, the result is just the inverse. We believe
that this behaviour is due to the fact that task adapta-
tion wastes most of the training material. It should be
noted that any phone not appearing in any of the digits

suffices to void the relevance of the whole segment. For
instance, only some 5% of TIMIT segments is profited
in MCT—and the available material in TIMIT is not
too much to waste it!—. In the experiments we have
carried out the language models used are smoothed,
nevertheless the profited material still falls below 25%.

3.2 Spanish Dates Recognition

We have also applied three of the discriminative
methods lang, task and mix3 to a rather different
task: recognition of Spanish spoken dates recorded
through the telephone fixed network. The speech
database used was the Spanish SpeechDat corpus [3].
680 Speakers—both male and female—were extracted
from four dialectal zones of Spain. A rather simpli-
fied grammar of the dates was used. The transitions
between words were also adjusted in the base experi-
ment, but this same value was used for the other three
ones?. Function words are not taken into account in
the recognition results, which are shown on Table 2.

| name err inse dele subs goal | corr |
base  24.0 4.4 48 148 80.0 | 33.7
lang 21.2 2.1 5.2 138 809 | 387
task 22.0 2.1 54 144 80.2 | 36.7
mix3 19.6 1.9 49 12.8 82.3 | 43.7

Table 2: Spanish dates recognition results.
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