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frequency ranges occurs. [Wegmaeh al (1996)] used a

ABSTRACT piecewise linear spectral mapping to avoid this problem. They
In Vocal Tract Length Normalization (VTLN) a linear or estimated t.he .slope of the transformation function based on a
nonlinear frequency transformation compensates for differefi@ximum likelihood criterion. [Eide and Gish (1996)] proposed
vocal tract lengths. Finding good estimates for the speak@rcompromise of different vowel models, namely the uniform
specific warp parameters is a critical issue. Despite good resui#he model and the Helmholtz resonator. They warped the
using the Maximum Likelihood criterion to find parameters fofrequency axi$ of a speaker according to
a linear warping, there are concerns using this method. We 3f
searched for a new criterion that enhances the inter-class f'= kgOOOHZf
separability in addition to optimizing the distribution of each ) i i i
phonetic class. Using such a criterion, Linear Discriminanth€ Single warping parametdg was estimated using the
Analysis determines a linear transformation in a lowefPeakers formant values and the average formant values of all
dimensional space. For VTLN, we keep the dimension constagfeakers. [Gouvéa and Stern (1997)] used the first three
and warp the training samples of each speaker such that fhgmants to estimate a linear transformation.

Linear Discriminant is optimized. Although that criterion )
depends on all training samples of all speakers it can iterativdly & Previous study [Zhan and Westphal (1997)], we compared

provide speaker specific warp factors. We discuss how thigeMaximumLikelihood method (ML) with the formant based
approach can be app||ed in Speecfomion and present first appl’O&Ch and considered different Warping functions. The ML
results on two different recognition tasks. method outperformed the formant based approach and was used

successfully on a number of speechoggttion tasks with the

1 Speaker Normalization using VTLN JanusSpeechRecognitionToolkit (JRTK) [Finkeet al (1997)].

We use a piecewise linear warping function to interpolate the
Vocal Tract Length Normalization (VTLN) has proven to spectral values as in [Wegmaehal (1996)]. Similar to their
decrease the word error rate of a speechgmition system, experiments, it turned out to be important to use only voiced
compared to systems not using such an approach to reduce §hgech samples to calculate the liketid score. An experiment
variability introduced by different speakers. The main effecljth different feature streams (warped and not warped) for
addressed here is a shift of the formant frequencies of thgjced and unvoiced models showed that the performance is
speakers caused by their different vocal tract lengths. TWstter when using a warped spectrum for all models. To obtain
issues have been investigated. The first is how to map 0ggod warp factor estimates with only a very limited amount of
speaker’s spectrum on that of a “standard” or average speak@kt speaker data, we do not use a generic voiced model to
depending on a warp parameter which is correlated with th@culate the likelihood for the different warps, but the acoustic
vocal tract length. The other issue is how to find an appropriaigodel of the recognizer. On a German spontaneoaschp
warp parameter for each speaker. Most studies assume that dggnition task (GSST), we achieved similar results for
same algorithm is used for training and test, but this is n@ktimating the VTLN parameter on a single utterance (average
always necessary. duration: 7s) versus using all utterances of a speaker.

[Acero (1990)] has used a bilinear transform with one speaker 2 VTLN based on the ML Criterion
dependent parameter. In a first attempt he observed that the

algorithm chose a degenerate case where all input frames #fis section describes how we use the ML criterion in our

transformed 'n_to a constant. Therefore, he enforced a (_:OnSt@QEtem to derive warp factors for each speaker, and motivates a
average warping parameter over all speakers. Modeling tﬂ%w criterion that will be introduced in this paper.
vocal tract as a uniform tube of length L, the formant

frequencies are proportional to 1/L. Therefore, some approachEs obtain a speaker normalized system, we keep a list with one
use a linear warp of the frequency scale to normalize speakessirp factor for each training speaker. The factors are initialized
The warp can be performed in the time or spectral domain. with 1.0, which means no warp. Starting with a speech
the latter case, a new spectrum is derived by interpolation or bgcognition system without VTLN, we try different warps for
modifying the Mel frequency filter bank. When the warp iseach speaker and select the one with the besthidedi on
applied in the spectral domain, the problem of mismatchingoiced speech samples. These factors are based on a broad



distribution of unwarped speech data and can only be a firshch sample is assigned to a certain class. For classification
approximation. After estimating warp factors for each speakegourposes it is desirable that all samples of a class build a small
we perform an EM-update of the acoustic model using the nesgatter around the center of the class. The class centers should
factors. Thus the model can be iteratively improved. be widely spread in the feature space. This can mathematically

. N . be expressed by the following equation:
Despite significant improvements, ML based VTLN has the |T|

following drawbacks. First, when applying an iterative warp LD
factor search as described above, we sometimes observed a drift |\N|

of the average warp factor. Without any cross validation, the

feature space keeps shrinking. The samples are mapped sulereT is the total covariance matrix of all samples &ds

that all coefficients are equal which might optimize thehe average within covariance matrix of samples belonging to
likelihood but gives bad recognition results. A second concetthe same class; :

results if using.inearDiscriminantAnalysis (LDA) as the last W = z p(C- ) W

preprocessing step to create sample vectors with a reduced | ! !

number of coefficients. LDA selects a sub space that facilitates

discrimination of given classes (phonemes or parts of it)n LinearDiscriminantAnalysis (LDA) [Fukunaga 1972], this
Variance within a class, for example caused by differerdriterion is maximized in a subspace of the original feature
speakers, is minimized. The optimal sub space will certainly gpace defined by a linear transformation. It is used to derive a
different as soon as a speaker normalization scheme such ms n matrix to reduce th@ dimensional feature vectors to a
ML-VTLN is introduced. When we search for the warp factorsgdimensionms<n.

we either do it without LDA or end up with a suboptimal LDA

transform. In any case, we have to calculate a new LD&.2 LD Warp Factor Estimation

transformation matrix with the new factors and have to train the
system again. For speaker normalization we want to find a parameter for each

) ) _ _ _ speaker such that the samples of a phonetic class have a smaller
The idea underlying VTLN is to normalize theesgh signals of yariance, under the constraint that different classes can still be
different speakers such that it is similar to the speech of fscriminated. This is exactly what is measured by the LD
‘standard” or average speaker. ML-warp factors can n@kiterion. Since we can not optimize the warp parameters of all
guarantee such standardization because masgmezers model  gpeakers simultaneously, we have chosen an iterative approach
speech units as Gaussian mixtures. They contain clusters (‘ft@;t like in the ML based VTLN method. A set of new warp
male and female speakers), and when a speaker is warped fii§ors is tried for each speaker separately, while the parameters
likelihood might by highest when the samples are warped to th; the other speakers are kept constant. The warp factor with
nearest cluster. the best LD value is chosen for the next iteration. Note that this

We performed an experiment where we used only one Gaussigue depends on all other speakers’ samples which are warped

per class. Thus the warp factors are forced to map all speakBf§rding to their currently best warping factor. To avoid
into a single cluster. Another intention was to speed up tfgcalculating the two covariance matrices using all samples of
system by reducing the computational cost for calculating € Whole data base, we use the scheme depictégure 1.

number of Gaussians for each class. On tBerman oy experiments show that the new criterion is a u-shaped
SpontaneousScheduling Task (GSST), we trained a small fynction over the warping factor. When using the same simple
context-independent  system with ML-VTLN. It had onepreprocessing as for the single Gaussian experiment with the
Gaussian per class and used Mel frequency spectral coefficiegigne number of classes, the algorithm was able to find good

without LDA. The drift effect was very strong and the trainingNarping parameters which settle after a small number of
resulted in degenerated warp parameters which had a g9gdations.

likelihood, but were essentially useless foeegh reognition.

Based on this experiment, we wanted a method that reduces e compare with our standard ML-VTLN approach, we used
variance of the phonetic classes, but does not destroy tHe same preprocessing and polyphone classes as the recognizer.
structure of the feature space, such that egmizer is still able Figure 2 shows the average warp factor change between

to discriminate between classes. iterations for LD and ML-VTLN. In the first iteration, starting
with all factors equal 1, LD-VTLN distributes the warp factors
3 VTLN based on the LD Criterion more but then does less changes than ML-VTE\ure 3
shows the LD value for all speakers over the iterations. Since
3.1 The Linear Discriminant Criterion this value depends on the warp factors only, we could also

determine it for the ML-VTLN. The value for iteration O stands
The Linear Discriminant Criterion (LD) is based on the for the system without VTLN which means all warp factors are
covariance matrices of a given sample set. It is assumed tl&t to 1. With only one iteration this value could be increased



Given: Samples of all speakers and their phonetic class 500000

1. Accumulate all sampleg of a class;, in a mean accumulator 400000 1

m, and all samples in a scatter accumul&orhe samples are 300000 A
warped according to the current warp factor of the speaker they g

belong to. 200000 1 % —WLVTN
m = z X; 100000 4 ——LD-VTLN
l 0 T Ll L) L)
S= z X; D(ijT 0 1 2 3 4
T

iteration

Note that with these two accumulators and thents foreach  rigyre 3: LD values over 4 iterations.
classWandT and thereforé&.D can be calculated.

4  Comparison with LDA

2. For each speaker:

O Warp the samples of the speaker according to tigince for the newly proposed LD-VTLN, we use the same
current warp factor and remove their contribution frongriterion as for LDA, we want to discuss the differences and
the accumulators. Keep them as(speaker) and Possibilities to combine them.

S(speaker). For LDA the samples are static in a given feature space. It will

For each warp of a set of warp factors within a gn@le the best “view” in a linear sub space such that the
window around the current one: coefficients will be decorrelated and discriminative features will
be preserved. When using LD-VTLN the dimension and the
O Warp the samples of the speaker angsaire space are kept constant but the samples of each speaker
accumulate it tan(speakerjandS(speakgr can be warped until they eventually build easier to discriminate
clusters. The matricesT and W to calculate the LDA
transformation matrix are a byproduct of the LD-VTLN and so
LDA can be put on top of it at any time. Since the acoustic
Q Pick the warp factor with the be&tD for that model of the recognizer is not involved to find the warp
speaker. parameters as for the ML-VTLN, we could use the feature space

3. Proceed with 1 until the average warp factor change faﬁsefore the dimension reduction. The criterion can also be

. . L. easured in the reduced space for any given dimension, but this
below a threshold or a maximum number of iteration is reached. " .
requires an additional step to perform the LDA for each speaker

Figure 1: LD warp factor estimation scheme and warp factor. For our experiments we therefore used the LD
criterion in the original space.

O Use these accumulators to calculaB(T,W)
for the considered warp factor and speaker.

by a factor of 2.3 by the LD-VTLN training scheme. A similar 5 Experiments and Results
value was also reached by the ML-VTLN in the 4th iteration.

In this section, we present results using LD-VTLN on two very

0,07 different speech regnition tasks and compare it with the ML-
0,06 1 — K — ML-VTLN VTLN. The first database consists of conversational German
g 0051 —LD-VTLN speech from scheduling dialogs [Finke al (1997)]. The

second is a Chinese dictation task from GlabalPhone project
[Schultz and Waibel (1998)]. They provide not only different
speaking styles, but also very different language characteristics.

The German Spontaneous Scheduling database (GSST) consists
of 1671 speakers with 14000 utterances for training. The
compared systems are context dependent and use 2500 clustered
polyphone models. The preprocessing is based on 13 Mel
cepstral coefficients with first and second order derivatives.
After cepstral mean subtraction, LDA is used to reduce the
input to 32 dimensional feature vectors. Speaker adapted
Viterbi alignments to initialize the recognizers and to assign
each sample to phonetic class as well as the search parameters

iteration

Figure 2: Average warp factor delta between iterations.



were taken from a previous ML-VTLN system. A new standard
ML-VTLN system was trained over four combined warp/EM
iterations with fixed Viterbi alignments (sd€igure 4). The
performance was very similar to previous VTLN systems.
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Figure 4: Warp factor distribution for ML-VTLN
(GSST, left: males, right: females) after 4 iterations

Task No VTLN | ML-VTLN |LD-VTLN
German SST 16.8% 15.4% 15.6%
Chinese Dictation| 20.3% 18.4% 18.0%

Table 1: error rates on two speech ogaition tasks
6 Conclusion and Future Work

In this paper, we proposed a new criterion for vocal tract length
normalization. We showed how it can be applied to estimate a
new set of warping parameters without training an acoustic
model based on Gaussian mixtures. The derived normalization
parameters can be found within only a few iterations and are as
good as the one we get from our standard ML-VTLN. Memory
requirements for this approach are low since only one matrix
and one vector per class are needed as accumulators. The new
criterion harmonize better with LDA and is more stable than the

ML approach. We think that we could further benefit by using
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Figure 5: Warp factor distribution for LD-VTLN
(GSST, left: males, right: females) after 1 iteration

To train the LD system we took 20 seconds of every speaker to 3.
estimate the warp factors. After the first warp iteration (see
Figure 5) we trained a new system over four iterations with the
given Viterbi alignments, keeping the warping factors constant.
Both systems were tested using 343 utterances of 70 speakers.,
The ML-system achieved a word error rate of 15.4%, whereas
the LD-system was slightly worse with 15.6%. The perfor-
mance could not be increased by additional LD-warp iterations.

The Chinese database consists of 77 training speakers with
5124 utterances (150,000 spoken units). For the experiments,
we used a context dependent system with 1500 clustered 6
polyphone models. The preprocessing is similar to the German
system except for 3 additional coefficients (e.g. zero crossing
rate) and a reduction to 24 instead of 32 dimensions. Tested on
149 utterances from 6 different speakers we found that the LD- 7.
VTLN results in slightly better error rates in terms of pinyin
units.

Table 1 compares the systems’ performance for both tasks with
and without speaker normalization. It shows that the relative
error reduction using VTLN is between 8% and 11%.

only certain classes for the evaluation of the LD-criterion. As
for ML-VTLN it might be better to use only phonetic classes
that are affected by different vocal tract lengths.
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