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ABSTRACT

In this study, the performance of an auditory-model feature-
extraction “front end” was assessed in an isolated-word speech
recognition task using a common hidden Markov model (HMM)
“back end”, and compared with the performance of other feature
representation front-end methods including mel-frequency cepstral
coefficients (MFCC) and two variants (J- and L-) of the relative
spectral amplitude (RASTA) technique. The recognition task was
performed in the presence of varying levels and types of additive
noise and spectral distortion using standard HMM whole-word
models with the Bellcore Digit database as a corpus. While all
front ends achieved comparable recognition performance in clean
speech, the performance of the auditory-model front end was
generally significantly higher than other methods in recognition
tasks involving background noise or spectral distortion. Training
HMMs with speech processed by the auditory-model or L-RASTA
front end in one type of noise also improved the recognition
performance with other kinds of noise. This “cross-training” effect
did not occur with the MFCC or J-RASTA front end.

1. INTRODUCTION
Most automatic speech recognition systems are based on a spectral-
energy approach to feature extraction, such as computation of
FFTs, LPCs, or cepstral coefficients. These systems are much more
sensitive to additive noise and conditions of spectral distortion than
human speech perception [1]; hence, it has been suggested that
recognition performance could be improved in these adverse
conditions by using feature extraction approaches based on the
human auditory system [2].

Several previous studies have applied HMM-based isolated word
recognizers to digit databases. Discrete HMMs using a 64-element
VQ codebook derived from LPC input coefficients achieved a
92.8% recognition rate [9]. The performance increased to 94.8% in
a system employing continuous density HMMs with a diagonal
covariance model and five Gaussian mixture components [10]. A
similar experiment, conducted on the Bellcore Digit database using
J-RASTA and PLP front-end techniques reported on the
recognition performance in a variety of adverse conditions,
including additive noise and linear spectral distortion [8]. The
additive noise (Volvo noise) was recorded over a cellular phone
from a moving automobile. Linear filtering of the recorded sounds
was used to simulate the changes of frequency response due to
switching from an electret microphone to a carbon microphone.

In this paper, the performance of an auditory-model front end [5,6]
is compared to several other front ends including MFCC and two
variants of RASTA (J- and L-) in a variety of adverse conditions.
To make the comparison of the performance of different front ends
meaningful, we chose a uniform speaker-independent isolated word

recognition task (the Bellcore digits task), and used identical
testing and training methodology and an identical pattern-matching
system based on standard whole-word HMM models.

2. METHODS

2.1 Isolated digit database
The Bellcore Isolated Digit database comprises eleven isolated
digits (‘one’ to ‘nine’, ‘zero’, and ‘oh’) and two control words
(‘yes’ and ‘no’) uttered by 200 speakers over dial-up telephone
lines resulting in 2600 utterances [4]. The utterances of 151
speakers were used for training and the utterances of the remaining
49 speakers for testing. All utterances were automatically cut using
a signal energy criterion that retained leading and trailing silence,
though not so much as to necessitate silence models in the HMMs.
Files also included artifacts such as the click-like transients that are
naturally present in the data. Because both the RASTA and the
auditory-model front ends require some filter initialization (e.g.
RASTA requires 4 frames to “prime” its IIR filter), feature files
were actually computed on extended sounds, that is, sounds that
had been padded with an extra 100 ms of sound in front of the
previously determined word margins. After feature computation on
the extended sounds, the feature files were cut back to the
originally determined word margins, discarding the initial section.

2.2 Front ends
The HMM recognition system was trained and tested using feature
sets generated by four front ends:

• MFCC: Mel-frequency weighted cepstral coefficients were
used as a benchmark to evaluate the performance of the
recognizer.

• J-RASTA and L-RASTA: The RASTA technique estimates
the time-varying spectrum based on the filtering of time
trajectories of outputs from critical-band filters to achieve
robustness against additive noise and spectral filtering [3,4].
The parameters of J-RASTA have been optimized by the
method’s originators for performance in the presence of
additive noise, specifically Volvo noise. The parameters of
L-RASTA have been optimized for performance in the
presence of spectral distortion. The RASTA code we used
was obtained from the International Computer Science
Institute at Berkeley (ICSI).

• Auditory model: The auditory model front end comprises a
bank of 120 discrete-time FIR filter channels whose
frequency response was derived from the numerical solution
of a three-dimensional cochlear hydrodynamic model
representing the velocity of response of the cochlea’s basilar
membrane at positions logarithmically spanning the range of
characteristic frequency (CF) from 250 to 3400 Hz. For



each channel, the instantaneous magnitude and phase of
response were computed at an effective sample rate of 16
kHz by inverse Hilbert transformation. In previous studies,
we have shown that formants can be detected
“asynchronously”  using only the instantaneous phase of
response[6]. In the present study, our intent was to produce
an auditory-model feature set which could be used as a
direct replacement for frame-based spectral or MFCC
features in conjunction with the HMM. Accordingly, we
produced feature vectors based on the instantaneous
magnitude of response as follows: at each time point, 1) the
logarithm of the instantaneous magnitude of the array of
channels was computed; 2) the log magnitude of each
channel’s output was then normalized by an AGC factor
representing adaptation processes in the cochlea. For each
channel, this AGC factor was an additive log gain
proportional to a broad spatial average of 2.5 critical bands
on either side of the channel, of the magnitudes of the output
of the channels time averaged with a one-pole filter with a
time constant of 200 msecs; 3) the normalized log-
magnitude was saturated to a 30 dB dynamic range with a
limiter representing the saturating nonlinearity of the
average rate of auditory-nerve discharge; 4) the data were
downsampled to a 100 Hz rate and the DCT performed so
that the auditory-model feature vectors would appear to the
HMM as a direct replacement of MFCCs.

2.3 HMM classifier
We employed an isolated word recognizer based on whole-word
HMM models using the Entropics HMM toolkit HTK V2.0. The
HMMs featured left-right state transition matrices consisting of
nine states including non-emitting initial and final states. The
HMM output probabilities were modeled with continuous density
models comprising Gaussian mixture components with a diagonal
covariance matrix. In initial experiments, we determined that full
covariance matrices did not enhance recognition results.

For all front ends, feature vectors were generated at a rate of
100 Hz and a DCT was performed to produce cepstral coefficients.
Regardless of the front end under test, the HMMs received as input
vectors of the first nine of these cepstral coefficients (excluding the
zeroth coefficient) plus the nine corresponding delta-coefficients,
which were found to enhance the recognition performance
significantly.

HMMs were initialized by uniformly dividing the feature data into
nine segments with each segment associated with one state of the
HMM model. To allow for a variable number of Gaussian mixture
components, each state was initialized with one mixture component
by computing the mean and standard deviation of all training data
corresponding to the segment associated with this state. The
subsequent training process employed the Baum-Welch re-
estimation procedure. After each training cycle, the mixture

component with the largest mixture weight was split by copying
the mixture and dividing the weights of both mixtures by two. The
means of the copies were modified by plus or minus 0.2 standard
deviations. This training procedure and the splitting of the largest
mixture component was repeated until the recognition performance
achieved a maximum in the clean speech environment, which
typically occurred after training 3 to 9 mixture components.

2.4 Training and testing procedure
The impact of environmental effects on recognition performance
was assessed in a variety of acoustic environments: a “clean
speech” environment; several environments in which additive noise
of different types was added at varying amplitudes; and
environments in which the speech was subject to spectral filtering
at different bandwidths. The clean speech environment consisted of
the unaltered Bellcore speech samples recorded in at standard
telephone bandwidth in the presence of normally occurring baseline
noise.  To test the noise immunity of the front ends, white noise,
pink noise, and Volvo noise were added to clean speech at various
SNRs. The SNR was computed by taking the RMS signal value of
the cut speech sample as reference. Pink noise was produced by
filtering white noise with a one-pole lowpass filter at 250 Hz;
Volvo noise was derived from data files obtained from ICSI. This
type of noise was employed in an effort to match the real
conditions that might confront a speech recognizer when the user
is, for example, on a mobile phone in a car. Spectral distortion
comprised a one pole IIR lowpass filter with different cut-off
frequencies.

In this study, a number of training strategies were investigated.
These included training HMMs on features derived from clean
speech only and training on features derived from both clean
speech and speech with additive white noise at 6 and 0 dB SNR.  In
all cases, the trained HMMs were tested in 12 environments: with
clean speech; with white, pink and Volvo noise at three levels (6, 0
and -6 dB SNR); and with filtered speech at two bandwidths (125
and 250 Hz).

3. RESULTS

3.1 Training in clean speech
Figure 1a-c shows the recognition rates of digit recognizers trained
with clean speech using auditory-model, MFCC, J-RASTA, and L-
RASTA front ends and tested in white (a), pink (b), and Volvo
noise (c) environments. The leftmost data point in each plot
(marked with ∞ SNR) corresponds to the recognition rate in clean
speech, and is fairly similar for all front ends. While Tong[8]
reported a 96.8% recognition rate with the J-RASTA front end in
clean speech, in our hands J_RASTA achieved a 98.9% recognition
rate, an  improvement we ascribe to the delta-features we used,
which were not used by Tong.



a)

0

20

40

60

80

100

6 0 -6

R
ec

og
ni

tio
n 

R
at

e 
(%

)
White Noise

b)

0

20

40

60

80

100

6 0 -6

Pink Noise

c)

0

20

40

60

80

100

6 0 -6

Auditory
MFCC
J-RASTA
L-RASTA

Volvo Noise

d)

0

20

40

60

80

100

6 0 -6
SNR (dB)

R
ec

og
ni

tio
n 

R
at

e 
(%

)

e)

0

20

40

60

80

100

6 0 -6
SNR (dB)

f)

0

20

40

60

80

100

6 0 -6
SNR (dB)

Figure 1: Recognition results for system trained with clean speech only and tested with white (a), pink (b), and Volvo noise (c). Results
for a system trained with a mixture of clean speech and white noise and tested with white (d), pink (e), and Volvo noise (f).

The front ends showed very different noise-immunity to additive
noise. In general, MFCC performed significantly worse than all
other front ends in white noise but similar to L-RASTA in pink and
Volvo noise. The performance of L-and J-RASTA variants
appeared highly dependent on the characteristics of the noise. In
pink noise, L-RASTA performed much better than J-RASTA while
in Volvo noise the situation was reversed, showing that with
RASTA, no single parameter set suffices to produce good
performance for all three noise environments. In contrast, the
performance of the auditory-model front end with a single
parameter set appeared to be relatively good in all environments.
Specifically, this front end demonstrated better performance in
high-level white and pink noise than the L-RASTA, J-RASTA and
MFCC front ends. For example, whereas for RASTA and MFCC
the recognition rate in pink noise dropped significantly as the SNR
degraded from 6 dB to 0 dB (J-RASTA from 74.1 to 17.3%, L-
RASTA from 76.5 to 51.8%, and MFCC from 71.7 to 45.7%), the
performance of the auditory-model front end started significantly
higher and dropped less (from 93.9 to 84.1%). In white and pink
noise environments, the performance advantage of the auditory-
model front end is equivalent to an improvement in the SNR of
3 dB to 10 dB. In Volvo noise, J-RASTA performed better, perhaps
due to its parameter optimization for this environment.

We determined that better performance for the auditory model front
end could be obtained in specific environments if the parameters of
the model were adjusted to that environment; however, we did not
perform these optimizations since we are interested in producing a
front end whose performance would be relatively independent of

the environmental distortion imposed on the input signal, whose
characteristics may not be known or constant.

3.2 Mixed training conditions
A second experiment involved training the HMMs with “mixed”
features derived from both clean-speech and white-noise
environments at 6 dB and 0 dB SNR. Figure 1d-f shows
performance of systems trained with mixed features and tested with
white (d), pink (e), and Volvo noise (f). Training and testing with
mixed features had little effect on the recognition rate in clean
speech, but markedly improved the recognition performance of all
front ends in white noise, compared with the performance of the
same front ends trained in clean speech alone (as might be
expected). When tested with pink noise, the MFCC front end
suffered a substantial performance loss. In contrast, the auditory-
model front end demonstrated a “cross-training” benefit; that is, the
recognition performance improved even in noise environments of a
type different from the one used for training. The L-RASTA front
end showed a similar cross-training effect while the J-RASTA
front end benefited only at high SNR (low noise levels).
Notwithstanding the performance effects of training with “mixed”
features, the auditory-model still outperformed all other front ends
except at the high levels of added Volvo noise.

3.3 Spectral distortion
Figure 2 shows the results of recognition experiments in which
HMMs were tested with feature sets generated from speech that
had been lowpass filtered at two corner frequencies, 125 and
250 Hz. With HMMs trained only on clean speech (a), the



performance of both the auditory-model and the L-RASTA front
end was extremely robust, even with speech filtered at a corner
frequency of 125 Hz, achieving recognition rates (97.3% and
98.1% respectively) similar to those obtained in the clean speech
environment (98.6 and 98.0% respectively). In contrast, the
performance of the MFCC and J-RASTA front ends dropped
significantly (from 98.6% to 80.9% for MFCC; from 98.9% to
80.1% for J-RASTA). When trained with “mixed” features in clean
speech and white noise at 6 and 0 dB, the performance  of the
auditory-model and L-RASTA front ends appeared unaffected, the
MFCC front end suffered a performance loss while the J-RASTA
front end showed some cross-training benefit. Again, only one
variant of RASTA (this time L-RASTA) showed good recognition
performance on this task.
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Figure 2: Recognition results for a system trained with clean
speech only and tested with lowpass-filtered speech (a). Results for
a system trained with a mixture of clean speech and white noise
and tested with lowpass-filtered speech (b).

4. CONCLUSION
Summarizing our experiments, the auditory-model front end
generally performed better than other front ends in the presence of
noise and spectral distortion. Specifically, the auditory-model front
end did better in white and pink noise, and better than all but J-
RASTA in high levels of Volvo noise. The performance of the
auditory model also degraded more gently in the range of 6 dB to
0 dB SNR. The performance of the auditory model in conditions of
spectral distortion was better than MFCC and J-RASTA, and
comparable to L-RASTA (while the auditory model's performance
in noise was simultaneously better than either L-RASTA or
MFCC).

Training HMMs with either the auditory-model or L-RASTA front
end using “mixed” features derived from both clean speech and

white noise yielded significant cross-training benefits when the
system was tested with other noises; in contrast, the performance of
the MFCC front end in mixed training degraded.
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