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recognition task (the Bellcore digits task), and used identical
testing and training methodology and an identical pattern-matching

ABSTRACT

) i system based on standard whole-word HMM models.
In this study, the performance of an auditory-model feature-

extraction “front end” was assessed in an isolated-word speech 2. METHODS

recognition task using a common hidden Markov model (HMM)

“back end”, and compared with the performance of other featug 1 | solated digit database

representation front-end methods including mel-frequency cepsttal . . .
coefficients (MFCC) and two variants (J- and L-) of the relativ%ﬁh ?,[SB?gﬁZfetolsjaliiﬁd zDeI?<I)t d;;gbzst% (;?:gptr\';gscgr:fr\ﬁnwsﬂ?ed
spectral amplitude (RASTA) technique. The recognition task w sges’ and no’) utter,ed b ’200 speakers over dial-up telephone
performed in the presence of varying levels and types of additi & ing in 2 y p 2 Th P 2 151
noise and spectral distortion using standard HMM whole-word'¢s "est ting in 2600 utterances [4]. e utterances of 15

models with the Bellcore Digit database as a corpus. While peakers were used for training and the utterances of the remaining
front ends achieved comparable recognition performance in cleﬂﬁ speakers for testing. All utterances were automatically cut using

speech, the performance of the auditory-model front end Wﬁ.?SIgnal energy criterion that retained leading and trailing silence,

generally significantly higher than other methods in recognitio _ough not_ so much as to necessitate S|Ie_nce_models in the HMMs.
tasks involving background noise or spectral distortion. TraininE'les also included artifacts such as the click-like transients that are
HMMs with speech processed by the auditory-model or L-RASTAatUrally present in the data. Because both the RASTA and the
front end in one type of noise also improved the recognitioﬂ“d'tory'mc’del front ends require some filter initialization (e.g.

performance with other kinds of noise. This “cross-training” effedRASTA requires 4 frames to “prime” its IR filter), feature files
did not occur with the MECC or J-RASTA front end. were actually computed on extended sounds, that is, sounds that

had been padded with an extra 100 ms of sound in front of the
1. INTRODUCTION

previously determined word margins. After feature computation on
Most automatic speech recognition systems are based on a specwgl-_ exltlenc;jetd spundds, tge fea_ture d_flles d\_/ver;ah C.UI. t_black tt_o the
energy approach to feature extraction, such as computation Qjginally determined word margins, discarding the initial section.
FFTs, LPCs, or cepstral coefficients. These systems are much mgr
sensitive to additive noise and conditions of spectral distortion th?ni Front ends
human speech perception [1]; hence, it has been suggested @ HMM recognition system was trained and tested using feature

recognition performance could be improved in these adversets generated by four front ends:

conditions by using feature extraction approaches based on the
human auditory system [2]. ¢

Several previous studies have applied HMM-based isolated word
recognizers to digit databases. Discrete HMMs using a 64-element
VQ codebook derived from LPC input coefficients achieved a*®
92.8% recognition rate [9]. The performance increased to 94.8% in
a system employing continuous density HMMs with a diagonal
covariance model and five Gaussian mixture components [10]. A
similar experiment, conducted on the Bellcore Digit database using
J-RASTA and PLP front-end techniques reported on the
recognition performance in a variety of adverse conditions,
including additive noise and linear spectral distortion [8]. The
additive noise (Volvo noise) was recorded over a cellular phone
from a moving automobile. Linear filtering of the recorded sounds
was used to simulate the changes of frequency response due to
switching from an electret microphone to a carbon microphone.

In this paper, the performance of an auditory-model front end [5,6]
is compared to several other front ends including MFCC and two
variants of RASTA (J- and L-) in a variety of adverse conditions.

To make the comparison of the performance of different front ends
meaningful, we chose a uniform speaker-independent isolated word

MFCC: Mel-frequency weighted cepstral coefficients were
used as a benchmark to evaluate the performance of the
recognizer.

J-RASTA and L-RASTA: The RASTA technique estimates
the time-varying spectrum based on the filtering of time
trajectories of outputs from critical-band filters to achieve
robustness against additive noise and spectral filtering [3,4].
The parameters of J-RASTA have been optimized by the
method’s originators for performance in the presence of
additive noise, specifically Volvo noise. The parameters of
L-RASTA have been optimized for performance in the
presence of spectral distortion. The RASTA code we used
was obtained from the International Computer Science
Institute at Berkeley (ICSI).

Auditory model: The auditory model front end comprises a
bank of 120 discrete-time FIR filter channels whose
frequency response was derived from the numerical solution
of a three-dimensional cochlear hydrodynamic model
representing the velocity of response of the cochlea’s basilar
membrane at positions logarithmically spanning the range of
characteristic frequency (CF) from 250 to 3400 Hz. For



each channel, the instantaneous magnitude and phase of  component with the largest mixture weight was split by copying

response were computed at an effective sample rate of 16  the mixture and dividing the weights of both mixtures by two. The

kHz by inverse Hilbert transformation. In previous studies, means of the copies were modified by plus or minus 0.2 standard
we have shown that formants can be detected deviations. This training procedure and the splitting of the largest
“asynchronously” using only the instantaneous phase ofixture component was repeated until the recognition performance
response[6]. In the present study, our intent was to produaehieved a maximum in the clean speech environment, which
an auditory-model feature set which could be used astgpically occurred after training 3 to 9 mixture components.

direct replacement for frame-based spectral or MFCC

features in conjunction with the HMM. Accordingly, we 2.4 Training and testing procedure

produced feature vectors based on the instantaneOopge jmpact of environmental effects on recognition performance
magn_ltude of response as follows: at e_ach time point, 1) t'Was assessed in a variety of acoustic environments: a “clean
logarithm of the instantaneous magnitude OT the array %fpeech” environment; several environments in which additive noise
channel:s was computed; 2) the _Iog magnitude of eaglt igterent types was added at varying amplitudes; and
channel’s output was then normalized by an AGC factolironments in which the speech was subject to spectral filtering
representlng_ adaptation processes in the cp_chlea. For ?3?'Eiifferent bandwidths. The clean speech environment consisted of
channe_l, this  AGC factor_ was an additive _I_og 98Mhe unaltered Bellcore speech samples recorded in at standard
prop_ortlongl to a broad spatial average OT 2.5 critical banqélephone bandwidth in the presence of normally occurring baseline
on either side of t_he channel, of th_e magpnitudes O_f the qut ise. To test the noise immunity of the front ends, white noise,
c_)f the channels time averaged with a one-pole f||_ter with Bink noise, and Volvo noise were added to clean speech at various
time _constant of 200 msecs; 3) the no_rmallzed l_ogSNRs. The SNR was computed by taking the RMS signal value of
r_na_gmtude was sgturated oa 30.dB dynamc range withfe cut speech sample as reference. Pink noise was produced by
limiter representing the saturating nonlinearity of thtering white noise with a one-pole lowpass filter at 250 Hz;
average rate of auditory-nerve discharge; 4) the data WeBIvo noise was derived from data files obtained from ICSI. This

that the auditory-model feature vectors would appear to theyqitions that might confront a speech recognizer when the user
HMM as a direct replacement of MFCCs. is, for example, on a mobile phone in a car. Spectral distortion
23HMM classifier comprised a one pole IIR lowpass filter with different cut-off

] ) frequencies.
We employed an isolated word recognizer based on whole-word

HMM models using the Entropics HMM toolkit HTK V2.0. The In this study, a number of training strategies were investigated.
HMMs featured left-right state transition matrices consisting ofhese included training HMMs on features derived from clean

nine states including non-emitting initial and final states. ThePeech only and training on features derived from both clean
HMM output probabilities were modeled with continuous densitgPeech and speech with additive white noise at 6 and 0 dB SNR. In
models Comprising Gaussian mixture Components with a d|ago|ﬂ. cases, the trained HMMs were tested in 12 environments: with
covariance matrix. In initial experiments, we determined that fufilean speech; with white, pink and Volvo noise at three levels (6, 0

covariance matrices did not enhance recognition results. and -6 dB SNR); and with filtered speech at two bandwidths (125
and 250 Hz).

For all front ends, feature vectors were generated at a rate of

100 Hz and a DCT was performed to produce cepstral coefficients. 3. RESULTS

Regardless of the front end under test, the HMMs received as input

vectors of the first nine of these cepstral coefficients (excluding tt81 Tr ai ning in clean speech
zeroth coefficient) plus the nine corresponding delta-coefficient:
which were found to enhance the recognition performan
significantly.

}E’igure la-c shows the recognition rates of digit recognizers trained
With clean speech using auditory-model, MFCC, J-RASTA, and L-
RASTA front ends and tested in white (a), pink (b), and Volvo
HMMs were initialized by uniformly dividing the feature data intonoise (c) environments. The leftmost data point in each plot
nine segments with each segment associated with one state of(tharked witheo SNR) corresponds to the recognition rate in clean
HMM model. To allow for a variable number of Gaussian mixturepeech, and is fairly similar for all front ends. While Tong[8]
components, each state was initialized with one mixture componeaported a 96.8% recognition rate with the J-RASTA front end in
by computing the mean and standard deviation of all training datlean speech, in our hands J_RASTA achieved a 98.9% recognition
corresponding to the segment associated with this state. Tise, an improvement we ascribe to the delta-features we used,
subsequent training process employed the Baum-Welch nehich were not used by Tong.

estimation procedure. After each training cycle, the mixture
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Figure 1: Recognition results for system trained with clean speech only and tested with white (a), pink (b), and Volvo noise (¢). Results
for a system trained with a mixture of clean speech and white noise and tested with white (d), pink (€), and Volvo noise (f).

The front ends showed very different noise-immunity to additive
noise. In general, MFCC performed significantly worse than all
other front ends in white noise but similar to L-RASTA in pink and
Volvo noise. The performance of L-and JRASTA variants
appeared highly dependent on the characteristics of the noise. In
pink noise, L-RASTA performed much better than JRASTA while
in Volvo noise the situation was reversed, showing that with
RASTA, no single parameter set suffices to produce good
performance for al three noise environments. In contrast, the
performance of the auditory-model front end with a single
parameter set appeared to be relatively good in all environments.
Specificaly, this front end demonstrated better performance in
high-level white and pink noise than the L-RASTA, JRASTA and
MFCC front ends. For example, whereas for RASTA and MFCC
the recognition rate in pink noise dropped significantly as the SNR
degraded from 6 dB to 0dB (JRASTA from 74.1 to 17.3%, L-
RASTA from 76.5 to 51.8%, and MFCC from 71.7 to 45.7%), the
performance of the auditory-model front end started significantly
higher and dropped less (from 93.9 to 84.1%). In white and pink
noise environments, the performance advantage of the auditory-
model front end is equivalent to an improvement in the SNR of
3dB to 10 dB. In Volvo noise, JRASTA performed better, perhaps
due to its parameter optimization for this environment.

We determined that better performance for the auditory model front
end could be obtained in specific environments if the parameters of
the model were adjusted to that environment; however, we did not
perform these optimizations since we are interested in producing a
front end whose performance would be relatively independent of

the environmental distortion imposed on the input signal, whose
characteristics may not be known or constant.

3.2 Mixed training conditions

A second experiment involved training the HMMs with “mixed”
features derived from both clean-speech and white-noise
environments at 6dB and 0dB SNR. Figure 1d-f shows
performance of systems trained with mixed features and tested with
white (d), pink (e), and Volvo noise (f). Training and testing with
mixed features had little effect on the recognition rate in clean
speech, but markedly improved the recognition performance of all
front ends in white noise, compared with the performance of the
same front ends trained in clean speech alone (as might be
expected). When tested with pink noise, the MFCC front end
suffered a substantial performance loss. In contrast, the auditory-
model front end demonstrated a “cross-training” benefit; that is, the
recognition performance improved even in noise environments of a
type different from the one used for training. The L-RASTA front
end showed a similar cross-training effect while the J-RASTA
front end benefited only at high SNR (low noise levels).
Notwithstanding the performance effects of training with “mixed”
features, the auditory-model still outperformed all other front ends
except at the high levels of added Volvo noise.

3.3 Spectral distortion

Figure 2 shows the results of recognition experiments in which
HMMs were tested with feature sets generated from speech that
had been lowpass filtered at two corner frequencies, 125 and
250 Hz. With HMMs trained only on clean speech (a), the



performance of both the auditory-model and the L-RASTA front  white noise yielded significant cross-training benefits when the
end was extremely robust, even with speech filtered at a corner  system was tested with other noises; in contrast, the performance of
frequency of 125Hz, achieving recognition rates (97.3% and the MFCC front end in mixed training degraded.

98.1% respectively) similar to those obtained in the clean speech

environment (98.6 and 98.0% respectively). In contrast, the 5. ACKNOWLEDGMENTS
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