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ABSTRACT

This paper investigates a method of creating robust
speaker models that are not sensitive to session-dependent
(SD) utterance-variation and handset-dependent (HD) dis-
tortion for hidden Markov model (HMM)-based speaker
verification systems in a real telephone network. We re-
cently reported a method of creating session-independent
(SI) speaker-HMMs that are not sensitive to SD utter-
ance-variation. In that method, the distortion function
that transforms SI speaker-HMMs to SD speaker-HMMs
is introduced, and the parameters in the function and the
speaker-HMM parameters are jointly estimated using a
speaker adaptive training algorithm. This paper proposes a
new method that is less sensitive to SD utterance-variation
and HD distortion than the previous method. This new
idea focuses on different difficulties in estimating parame-
ters in distortion functions for SD utterance-variation and
HD distortion. In text-independent verification experi-
ments with recorded data from different handsets, the er-
ror reduction rate of the improved method compared with
that of the conventional method of cepstral mean normal-
ization is 24% when each speaker-HMM is recreated using
data uttered in five sessions.

1. INTRODUCTION

For speaker verification systems in a real telephone net-
work, input speech is distorted not only by session-
dependent (SD) utterance-variation caused by the changes
in vocal-tract conditions but also by the distortion caused
by the acoustic difference of handsets (including transmis-
sion line characteristics). This causes serious degradation
of the system performance. In practical systems, the bur-
den placed on each speaker to produce speech data is a
problem that requires careful consideration. As a result,
speech data is often collected using some fixed handsets in
a house or office over several sessions and the amount of
data collected in each session is usually small. In one ses-
sion, a series of utterances is continuously recorded within
Although initial
speaker models are created using such a small amount of

a limited time, i.e., dozens of seconds.

data recorded from some fixed handsets, the models are
not robust against SD utterance-variation and handset-
dependent (HD) distortion.

For SD utterance-variation, we recently reported a method
for creating robust speaker models that represent session-
independent (SI) speaker characteristics more accurately
by wusing the fixed-model complexity in HMM-based
speaker verification [1]. The reason why SD utterance-
variation is a difficult problem lies in the fact that it
is session-dependent and irregular.
amount of data for each speaker would be saved over
multiple sessions and a speaker model would be recre-
ated using this large data set containing utterance vari-
However, the spectral distributions of the large
data set often exhibit a high degree of variance and the
model represents fuzzy speaker characteristics. This may
reduce the discriminatory capabilities of speaker models.
In our previous method [1], it was assumed that session-
to-session utterance-variation comprises two distinct vari-
ations: one being SD caused by voice changes with time
and by the difference in texts among sessions especially
in text-independent systems, and the other is SI factors.
Conceptually, the proposed method attempts to remove
In this method, SD utterance-
variation is modeled as a distortion function, which is an

Generally, a large

ation.

SD utterance-variation.

HMM parameter transformation function, and transforms
the SI speaker-HMM to the SD speaker-HMM. The param-
eters in the function and the SI speaker-HMM parameters
are jointly estimated using the speaker adaptive training
(SAT) algorithm [2][3][4]. Text-independent speaker veri-
fication experiments with data uttered by 20 male speak-
ers over multiple sessions (3-month intervals) that were
recorded using the same condenser microphone showed
that this method more effectively normalized the effects
of SD utterance-variation than the conventional method of
cepstral mean normalization (CMN) [5][6].

This paper reports an improvement on our previous
method making it less sensitive to SD utterance-variation
and HD distortion. Here, we assume that session-to-session
variation in speech data comprises two distinct variations:
one being SD including SD utterance-variation and HD dis-
tortion, and the other is SI. Basically, the improved method



attempts to remove only SD utterance-variation. We con-
sider that although it is difficult to estimate irregular SD
utterance-variation from a small amount of input speech,
HD distortion can be represented in a simpler form and es-
timated from the input speech. In the improved method,
the SI speaker-HMM is first estimated using the compos-
ite function of the distortion functions for SD utterance-
variation and HD distortion based on the SAT algorithm.
Then, the parameter in the distortion function of the HD
distortion is estimated from input speech as a common bias
for each mixture-mean vector, and the SI speaker-HMM
is transformed to the SI-but-HD speaker-HMM by using
the distortion function. This SI-but-HD speaker-HMM is
used to judge the identities of individual speakers. In the
improved method, the distortion function of SD utterance-
variation is formulated as a linear transformation function
with scale and bias factors for each mixture-mean vector
in the speaker-HMM, and the performance levels of the
functions with/without a scale factor are compared.

2. ROBUST MODEL CREATION

In the proposed method, for training, the SI speaker-HMM
is estimated, and for testing, the distortion function of
the HD distortion in input speech is estimated. The SI-
but-HD speaker-HMM is created by transforming the SI
speaker-HMM using the distortion function. The following
sections explain how we create the SI speaker-HMM and
estimate the distortion function of the HD distortion in
input speech.

2.1. Creating session-independent speaker

model

In general, the speech data uttered by a speaker is as-
sumed to be a sample that is drawn from a probability
density function. Here, the speech data set uttered by a
speaker in different sessions is assumed to be a sample set
with different probability density functions corresponding
to each session but have common SI speaker characteristics.
According to this assumption, in the proposed method,
session-to-session variation in the speech data is modeled
as a pair of distinct variations: one being SD including SD
utterance-variation and HD distortion, and the other is SI.
In the formulation, the HMM parameter set 6, of speaker s
estimated from the data of speaker s including only SI vari-
ation is mapped into HMM parameter set 0" estimated
from the data of speaker s and session t distorted by SD
utterance-variation modeled as the distortion function Gﬁ“
as follows:

0 = al(a,). (1)

In a similar way, the HMM parameter set b, is mapped
into HMM parameter set ' estimated from the data of
speaker s and session t distorted by HD distortion modeled

as the distortion function Hit) as follows:

0 = 1M (,). (2)

In this paper, G and H") are defined as the forms for
mean vector p,;r of mixture component k in state j as

th)(ﬁsjk) = Hit])k - agt) . ﬂsjk + bgt)7 (3)

HO (fign) = plgh = frosn + b (4)

. t
is a scale vector for each mean vector, and b<Y)

(t)

Here, a;
and th) are bias vectors. Then, composite function Fs(t)

of th) and Hs(t) is defined as follows:
FO () = 1 = al? - e+ 289 (5)
where zgt) = bgt) + hgt).

The optimum set of HMM parameter 6, for speaker s and
the optimum set of the composite functions of each session
F, = (F§1),F§2),...,FS(T)) are jointly estimated so as to
maximize the likelihood using the SAT algorithm [2][3][4],

ie.,
T
(0., 7.) = arg max || £(0;109,0.)  (6)

where Ogt) is the sample of speaker s and session £, and

L() is the HMM likelihood function.

The SAT algorithm is a 3-step optimization of the distor-
tion functions, mean, and variance vectors (diagonal co-
variance HMMs). Terms aﬁ‘) and th) in the composite
function of Equation (5) are optimized according to the

maximum likelihood linear regression algorithm [7].

2.2. Handset-dependent distortion esti-

mation

Since the distortion function of HD distortion in input
speech H,(") (u denotes the session in which the speech
was uttered) is speaker-independent, we assumed that it
can be approximately estimated so as to maximize the like-
lihood of all speaker-HMMs {01,02,...,05,...,0.,...,0r}

for input speech, i.e.,

R
A = arg max H £(0§"); HM, 6.) (7)
H‘gu) r=1

where s denotes the claimed speaker and r denotes a
speaker.

Here, since the amount of calculation of Equation (7) is
linearly proportional to the population of the registered
speakers, the product is approximated using pooled HMM
0, made using the data set uttered by all registered speak-
ers based on the maximum likelihood (ML) estimation as
follows:

If[g“) — argm?;){[ﬁ(()ﬁu);Hﬁ"),Gs) : £(0£H)§ ng)’ 05)]. (8)
e

s



Case [ X | A | B | ¢ [ D |
Training | T1 [5] | T1,T2 [10] | T1-3 [15] [ T1-4 [20] | T1-5 [25]
Testing T2 T3 T4 T5 T6

Table 1: Sessions of Sentences for Training and Testing ([ ]: Total number of training sentences!K

3. EXPERIMENTAL CONDITIONS

The proposed method was evaluated in text-independent
speaker verification experiments. The database comprises
sentence data uttered by 20 male speakers; 10 speakers
were used as customers and the remaining speakers were
used as impostors. The sentences were selected from pho-
netically balanced sentences [9] and were read. Originally,
the speech was recorded in six sessions (T1-6) over 15
months and was recorded in the same recording room using
the same microphone for all speakers and for all sessions.
Here, the speech was re-recorded as telephone speech ran-
domly using five kinds of handsets. The frequency range
was 300-3400 Hz. The cepstral coefficients were calculated
by LPC analysis with an order of 16, a frame period of
8 ms, and a frame length of 32 ms. We used 1-state, 16-
Gaussian-mixture, diagonal covariance HMMs as speaker
models and a 1-state, 64-Gaussian-mixture, diagonal co-
variance HMM as a pooled model. For training, initial
speaker models were created using five sentences from ses-
sion T1, and the models were recreated also using five sen-
tences from the next session respectively. The texts were
varied from customer to customer and from session to ses-
sion. The average duration of each sentence was 4.2 sec.
For testing, the beginning 1 sec. of each of three sentences
from the subsequent session for training was evaluated in-
dividually. The sentences for testing were different from
those for training and were the same for all customers and
impostors and all recording sessions. Table1 lists sessions
(case X, A-D) of sentences for training and testing. In the
experiments, the likelihood normalization method based
on a posteriori probability was used [1][8]. The threshold
was set a posteriori for individual speakers to equalize the
probability of false acceptance and false rejection, and an
equal error rate was used for evaluation.

4. RESULTS

Table 2 lists the equal error rates for ML, and combinations
of SI and HD methods for each case. In the “ML” method,
each speaker model was conventionally recreated based on
the ML estimation using all available data of the speaker
in the case. Likelihood values of speaker models were nor-
malized using a likelihood value of a pooled model recre-
ated based on the ML estimation using all available data
of all registered speakers in the case [8]. In the “SI(bias
only)” and “SI(bias+scale)” methods, SI speaker-HMMs
were estimated using a linear transformation function
with/without the scale factor as the distortion function,

Case X A B C D

ML 30.7 || 24.7 | 24.3 | 20.0 | 14.5
SI(bias only) 30.7 || 26.7 | 24.3 | 21.7 | 14.0
SI(bias+scale) 30.7 || 25.7 | 23.0 | 19.7 | 14.0
SI(bias only)+HD 241 || 21.0 | 19.7 | 19.7 | 11.0
SI(bias+scale)+HD | 24.1 || 20.3 | 19.7 | 18.7 | 12.3

Table 2: Equal Error Rate (%) Comparison of ML
and Combinations of SI and HD Methods

and were used to judge the identities of individual speak-
The “SI(bias only)+HD” and “SI(bias+scale)+HD”
methods represent our proposed method and use SI-but-
HD speaker-HMMs. Likelihood values of SI and SI-but-HD
speaker-HMMs were normalized using a likelihood value of
an SI and SI-but-HD pooled model estimated using the
same distortion function as that for SI and SI-but-HD
speaker-HMMs [1].

ers.

The “SI+HD” method performed stably for each case, and
the “SI(bias only)+HD” method showed the best perfor-
mance in case D. The error reduction rate compared with
the “ML” method was 24% in case D and 15% on average.
The “SI(bias+scale)” method performed slightly better
than the “SI(bias only)” method, and the performance lev-
els of the “SI(bias only)+HD” and “SI(bias+scale)+HD”
methods were almost the same. The averaged value of
agt) in Equation (5) for each session and each vector or-
der was 0.98. This indicates that when using 1-state, 16-
Gaussian-mixture HMMs as speaker models, the stretch
of the mean vector space in the speaker-HMM varies only
slightly among sessions, and incorporating the scale factor
in the distortion function is not effective. The speech data
used in these experiments were originally uttered at some
fixed speaking rate for all sessions. It can be considered
that this controlled speaking rate makes the stretch of the
mean vector space unvarying.

5. DISCUSSION

Cepstrum mean normalization (CMN) is a well-known
technique for canceling the effects of channel and utter-
ance variation in speaker recognition [5][6].

Figurel compares the equal error rates for the
“ML+CMN” method and the “SI4+HD” method. In the
“ML+4CMN” method, speaker models were made using
the “ML” method with CMN. When only speech data ut-
tered over less than four sessions are available (cases A
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Figure 1: Equal error rates (%) for ML+ CMN and
SI+HD methods.

and B), the “ML+CMN” method performed better than
the “SI+HD” method. On the other hand, when speech
data uttered over four or more sessions are available (cases
C and D), the “SI+HD” method performed better than the
“ML+CMN” method. CMN has the advantage of normal-
izing SD variation, but it has the disadvantage of also nor-
malizing statistical speaker-dependent features included in
the long-term mean cepstrum for each utterance, which is
effective in speaker recognition [10]. It can be considered
that even when the number of sessions for speech data is
increased, statistical SI speaker characteristics cannot be
represented well in speaker-HMMs with CMN because of
the disadvantage of CMN, and the performance may not
necessarily improve.

6. CONCLUSION

We reported a method of creating SI-but-HD speaker mod-
els that are less sensitive to SD utterance-variation and HD
distortion for speaker verification over the public switched
telephone network. Text-independent speaker verification
experiments showed that the proposed method was effec-
tive and robust against session-to-session variation in in-
put speech. For the distortion function of SD utterance-
variation, the performance levels of the linear transforma-
tion functions with only a bias factor and with both scale
and bias factors were compared. It was shown that when
using 1-state, 16-Gaussian-mixture HMMs as speaker mod-
els, the stretch of the mean vector space in the speaker-
HMM varies only slightly for each session, and incorporat-
ing the scale factor in the distortion function is not effec-
tive. Moreover, a performance comparison of the conven-
tional ML method with CMN and the proposed method
showed that when speech data uttered over four or more
sessions are available, the proposed method performed bet-
ter than the conventional ML method with CMN because
statistical SI speaker characteristics cannot be represented
well in speaker-HMMs with CMN.
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