
ROBUST SPEAKER VERIFICATION INSENSITIVE TO

SESSION-DEPENDENT UTTERANCE VARIATION AND

HANDSET-DEPENDENT DISTORTION

Tomoko Matsui Kiyoaki Aikawa

NTT Human Interface Laboratories
1-1 Hikari-no-oka, Yokosuka-shi, Kanagawa, 239-0847 Japan

ABSTRACT

This paper investigates a method of creating robust

speaker models that are not sensitive to session-dependent

(SD) utterance-variation and handset-dependent (HD) dis-

tortion for hidden Markov model (HMM)-based speaker

veri�cation systems in a real telephone network. We re-

cently reported a method of creating session-independent

(SI) speaker-HMMs that are not sensitive to SD utter-

ance-variation. In that method, the distortion function

that transforms SI speaker-HMMs to SD speaker-HMMs

is introduced, and the parameters in the function and the

speaker-HMM parameters are jointly estimated using a

speaker adaptive training algorithm. This paper proposes a

new method that is less sensitive to SD utterance-variation

and HD distortion than the previous method. This new

idea focuses on di�erent di�culties in estimating parame-

ters in distortion functions for SD utterance-variation and

HD distortion. In text-independent veri�cation experi-

ments with recorded data from di�erent handsets, the er-

ror reduction rate of the improved method compared with

that of the conventional method of cepstral mean normal-

ization is 24% when each speaker-HMM is recreated using

data uttered in �ve sessions.

1. INTRODUCTION

For speaker veri�cation systems in a real telephone net-

work, input speech is distorted not only by session-

dependent (SD) utterance-variation caused by the changes

in vocal-tract conditions but also by the distortion caused

by the acoustic di�erence of handsets (including transmis-

sion line characteristics). This causes serious degradation

of the system performance. In practical systems, the bur-

den placed on each speaker to produce speech data is a

problem that requires careful consideration. As a result,

speech data is often collected using some �xed handsets in

a house or o�ce over several sessions and the amount of

data collected in each session is usually small. In one ses-

sion, a series of utterances is continuously recorded within

a limited time, i.e., dozens of seconds. Although initial

speaker models are created using such a small amount of

data recorded from some �xed handsets, the models are

not robust against SD utterance-variation and handset-

dependent (HD) distortion.

For SD utterance-variation, we recently reported a method

for creating robust speaker models that represent session-

independent (SI) speaker characteristics more accurately

by using the �xed-model complexity in HMM-based

speaker veri�cation [1]. The reason why SD utterance-

variation is a di�cult problem lies in the fact that it

is session-dependent and irregular. Generally, a large

amount of data for each speaker would be saved over

multiple sessions and a speaker model would be recre-

ated using this large data set containing utterance vari-

ation. However, the spectral distributions of the large

data set often exhibit a high degree of variance and the

model represents fuzzy speaker characteristics. This may

reduce the discriminatory capabilities of speaker models.

In our previous method [1], it was assumed that session-

to-session utterance-variation comprises two distinct vari-

ations: one being SD caused by voice changes with time

and by the di�erence in texts among sessions especially

in text-independent systems, and the other is SI factors.

Conceptually, the proposed method attempts to remove

SD utterance-variation. In this method, SD utterance-

variation is modeled as a distortion function, which is an

HMM parameter transformation function, and transforms

the SI speaker-HMM to the SD speaker-HMM. The param-

eters in the function and the SI speaker-HMM parameters

are jointly estimated using the speaker adaptive training

(SAT) algorithm [2][3][4]. Text-independent speaker veri-

�cation experiments with data uttered by 20 male speak-

ers over multiple sessions (3-month intervals) that were

recorded using the same condenser microphone showed

that this method more e�ectively normalized the e�ects

of SD utterance-variation than the conventional method of

cepstral mean normalization (CMN) [5][6].

This paper reports an improvement on our previous

method making it less sensitive to SD utterance-variation

and HD distortion. Here, we assume that session-to-session

variation in speech data comprises two distinct variations:

one being SD including SD utterance-variation and HD dis-

tortion, and the other is SI. Basically, the improved method



attempts to remove only SD utterance-variation. We con-

sider that although it is di�cult to estimate irregular SD

utterance-variation from a small amount of input speech,

HD distortion can be represented in a simpler form and es-

timated from the input speech. In the improved method,

the SI speaker-HMM is �rst estimated using the compos-

ite function of the distortion functions for SD utterance-

variation and HD distortion based on the SAT algorithm.

Then, the parameter in the distortion function of the HD

distortion is estimated from input speech as a common bias

for each mixture-mean vector, and the SI speaker-HMM

is transformed to the SI-but-HD speaker-HMM by using

the distortion function. This SI-but-HD speaker-HMM is

used to judge the identities of individual speakers. In the

improved method, the distortion function of SD utterance-

variation is formulated as a linear transformation function

with scale and bias factors for each mixture-mean vector

in the speaker-HMM, and the performance levels of the

functions with/without a scale factor are compared.

2. ROBUST MODEL CREATION

In the proposed method, for training, the SI speaker-HMM

is estimated, and for testing, the distortion function of

the HD distortion in input speech is estimated. The SI-

but-HD speaker-HMM is created by transforming the SI

speaker-HMM using the distortion function. The following

sections explain how we create the SI speaker-HMM and

estimate the distortion function of the HD distortion in

input speech.

2.1. Creating session-independent speaker

model

In general, the speech data uttered by a speaker is as-

sumed to be a sample that is drawn from a probability

density function. Here, the speech data set uttered by a

speaker in di�erent sessions is assumed to be a sample set

with di�erent probability density functions corresponding

to each session but have common SI speaker characteristics.

According to this assumption, in the proposed method,

session-to-session variation in the speech data is modeled

as a pair of distinct variations: one being SD including SD

utterance-variation and HD distortion, and the other is SI.

In the formulation, the HMM parameter set ~�s of speaker s

estimated from the data of speaker s including only SI vari-

ation is mapped into HMM parameter set �
(t)
s estimated

from the data of speaker s and session t distorted by SD

utterance-variation modeled as the distortion function G
(t)
s

as follows:

�
(t)
s = G

(t)
s (~�s): (1)

In a similar way, the HMM parameter set ~�s is mapped

into HMM parameter set �
(t)
s estimated from the data of

speaker s and session t distorted by HD distortion modeled

as the distortion function H
(t)
s as follows:

�
(t)
s = H

(t)
s (~�s): (2)

In this paper, G
(t)
s and H

(t)
s are de�ned as the forms for

mean vector �sjk of mixture component k in state j as

G
(t)
s (~�sjk) = �

(t)

sjk = a
(t)
s � ~�sjk + b

(t)
s ; (3)

H
(t)
s (~�sjk) = �

(t)

sjk
= ~�sjk + h

(t)
s : (4)

Here, a
(t)
s is a scale vector for each mean vector, and b

(t)
s

and h
(t)
s are bias vectors. Then, composite function F

(t)
s

of G
(t)
s and H

(t)
s is de�ned as follows:

F
(t)
s (~�sjk) = �

(t)

sjk = a
(t)
s � ~�sjk + z

(t)
s (5)

where z
(t)
s = b

(t)
s + h

(t)
s .

The optimum set of HMM parameter ~�s for speaker s and

the optimum set of the composite functions of each session
~Fs = ( ~F

(1)

s ; ~F
(2)

s ; : : : ; ~F
(T )
s ) are jointly estimated so as to

maximize the likelihood using the SAT algorithm [2][3][4],

i.e.,

(~�s; ~Fs) = arg max
(�s;Fs)

TY

t=1

L(O(t)
s ;F (t)

s ; �s) (6)

where O
(t)
s is the sample of speaker s and session t, and

L() is the HMM likelihood function.

The SAT algorithm is a 3-step optimization of the distor-

tion functions, mean, and variance vectors (diagonal co-

variance HMMs). Terms ~a
(t)
s and ~z

(t)
s in the composite

function of Equation (5) are optimized according to the

maximum likelihood linear regression algorithm [7].

2.2. Handset-dependent distortion esti-

mation

Since the distortion function of HD distortion in input

speech H
(u)
s (u denotes the session in which the speech

was uttered) is speaker-independent, we assumed that it

can be approximately estimated so as to maximize the like-

lihood of all speaker-HMMs f�1; �2; : : : ; �s; : : : ; �r; : : : ; �Rg

for input speech, i.e.,

~H
(u)
s = argmax

H
(u)
s

RY

r=1

L(O
(u)
s ;H

(u)
r ; �r) (7)

where s denotes the claimed speaker and r denotes a

speaker.

Here, since the amount of calculation of Equation (7) is

linearly proportional to the population of the registered

speakers, the product is approximated using pooled HMM

�p made using the data set uttered by all registered speak-

ers based on the maximum likelihood (ML) estimation as

follows:

~H
(u)
s = argmax

H
(u)
s

[L(O
(u)
s ;H

(u)
s ; �s) � L(O

(u)
s ;H

(u)
s ; �p)]: (8)



Case X A B C D

Training T1 [5] T1,T2 [10] T1-3 [15] T1-4 [20] T1-5 [25]

Testing T2 T3 T4 T5 T6

Table 1: Sessions of Sentences for Training and Testing ([ ]: Total number of training sentences!K

3. EXPERIMENTAL CONDITIONS

The proposed method was evaluated in text-independent

speaker veri�cation experiments. The database comprises

sentence data uttered by 20 male speakers; 10 speakers

were used as customers and the remaining speakers were

used as impostors. The sentences were selected from pho-

netically balanced sentences [9] and were read. Originally,

the speech was recorded in six sessions (T1-6) over 15

months and was recorded in the same recording room using

the same microphone for all speakers and for all sessions.

Here, the speech was re-recorded as telephone speech ran-

domly using �ve kinds of handsets. The frequency range

was 300-3400 Hz. The cepstral coe�cients were calculated

by LPC analysis with an order of 16, a frame period of

8 ms, and a frame length of 32 ms. We used 1-state, 16-

Gaussian-mixture, diagonal covariance HMMs as speaker

models and a 1-state, 64-Gaussian-mixture, diagonal co-

variance HMM as a pooled model. For training, initial

speaker models were created using �ve sentences from ses-

sion T1, and the models were recreated also using �ve sen-

tences from the next session respectively. The texts were

varied from customer to customer and from session to ses-

sion. The average duration of each sentence was 4.2 sec.

For testing, the beginning 1 sec. of each of three sentences

from the subsequent session for training was evaluated in-

dividually. The sentences for testing were di�erent from

those for training and were the same for all customers and

impostors and all recording sessions. Table 1 lists sessions

(case X, A-D) of sentences for training and testing. In the

experiments, the likelihood normalization method based

on a posteriori probability was used [1][8]. The threshold

was set a posteriori for individual speakers to equalize the

probability of false acceptance and false rejection, and an

equal error rate was used for evaluation.

4. RESULTS

Table 2 lists the equal error rates for ML and combinations

of SI and HD methods for each case. In the \ML" method,

each speaker model was conventionally recreated based on

the ML estimation using all available data of the speaker

in the case. Likelihood values of speaker models were nor-

malized using a likelihood value of a pooled model recre-

ated based on the ML estimation using all available data

of all registered speakers in the case [8]. In the \SI(bias

only)" and \SI(bias+scale)" methods, SI speaker-HMMs

were estimated using a linear transformation function

with/without the scale factor as the distortion function,

Case X A B C D

ML 30.7 24.7 24.3 20.0 14.5

SI(bias only) 30.7 26.7 24.3 21.7 14.0

SI(bias+scale) 30.7 25.7 23.0 19.7 14.0

SI(bias only)+HD 24.1 21.0 19.7 19.7 11.0

SI(bias+scale)+HD 24.1 20.3 19.7 18.7 12.3

Table 2: Equal Error Rate (%) Comparison of ML

and Combinations of SI and HD Methods

and were used to judge the identities of individual speak-

ers. The \SI(bias only)+HD" and \SI(bias+scale)+HD"

methods represent our proposed method and use SI-but-

HD speaker-HMMs. Likelihood values of SI and SI-but-HD

speaker-HMMs were normalized using a likelihood value of

an SI and SI-but-HD pooled model estimated using the

same distortion function as that for SI and SI-but-HD

speaker-HMMs [1].

The \SI+HD" method performed stably for each case, and

the \SI(bias only)+HD" method showed the best perfor-

mance in case D. The error reduction rate compared with

the \ML" method was 24% in case D and 15% on average.

The \SI(bias+scale)" method performed slightly better

than the \SI(bias only)" method, and the performance lev-

els of the \SI(bias only)+HD" and \SI(bias+scale)+HD"

methods were almost the same. The averaged value of

a
(t)
s in Equation (5) for each session and each vector or-

der was 0.98. This indicates that when using 1-state, 16-

Gaussian-mixture HMMs as speaker models, the stretch

of the mean vector space in the speaker-HMM varies only

slightly among sessions, and incorporating the scale factor

in the distortion function is not e�ective. The speech data

used in these experiments were originally uttered at some

�xed speaking rate for all sessions. It can be considered

that this controlled speaking rate makes the stretch of the

mean vector space unvarying.

5. DISCUSSION

Cepstrum mean normalization (CMN) is a well-known

technique for canceling the e�ects of channel and utter-

ance variation in speaker recognition [5][6].

Figure 1 compares the equal error rates for the

\ML+CMN" method and the \SI+HD" method. In the

\ML+CMN" method, speaker models were made using

the \ML" method with CMN. When only speech data ut-

tered over less than four sessions are available (cases A
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Figure 1: Equal error rates (%) for ML+CMN and

SI+HD methods.

and B), the \ML+CMN" method performed better than

the \SI+HD" method. On the other hand, when speech

data uttered over four or more sessions are available (cases

C and D), the \SI+HD" method performed better than the

\ML+CMN" method. CMN has the advantage of normal-

izing SD variation, but it has the disadvantage of also nor-

malizing statistical speaker-dependent features included in

the long-term mean cepstrum for each utterance, which is

e�ective in speaker recognition [10]. It can be considered

that even when the number of sessions for speech data is

increased, statistical SI speaker characteristics cannot be

represented well in speaker-HMMs with CMN because of

the disadvantage of CMN, and the performance may not

necessarily improve.

6. CONCLUSION

We reported a method of creating SI-but-HD speaker mod-

els that are less sensitive to SD utterance-variation and HD

distortion for speaker veri�cation over the public switched

telephone network. Text-independent speaker veri�cation

experiments showed that the proposed method was e�ec-

tive and robust against session-to-session variation in in-

put speech. For the distortion function of SD utterance-

variation, the performance levels of the linear transforma-

tion functions with only a bias factor and with both scale

and bias factors were compared. It was shown that when

using 1-state, 16-Gaussian-mixture HMMs as speaker mod-

els, the stretch of the mean vector space in the speaker-

HMM varies only slightly for each session, and incorporat-

ing the scale factor in the distortion function is not e�ec-

tive. Moreover, a performance comparison of the conven-

tional ML method with CMN and the proposed method

showed that when speech data uttered over four or more

sessions are available, the proposed method performed bet-

ter than the conventional ML method with CMN because

statistical SI speaker characteristics cannot be represented

well in speaker-HMMs with CMN.
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