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ABSTRACT

Human perceptual experiments are described that present listen-
ers with segmented stop consonant speech stimuli in noise. The
selection of short duration speech segments is based on a local
measure of the signal-to-noise ratio calculated over 1ms win-
dows. The aim is to create stimuli with known fluctuations
occurring between a speech and noise sample to assess whether
the presence of short duration “gaps” in the noise produce
favourable and unfavourable signal regions that influence identi-
fication. Perceptual results are reported that suggest human lis-
teners make better use of signals that comprise only of positive,
local signal-to-noise ratio segments. Such regions are assumed to
be more favourable for stimuli identification. Presentation of
stimuli containing only negative signal-to-noise ratio regions
does not appear to contribute as much. A model that is based on
the accumulation of short duration spectral segments is presented
that produces a similar set of identification functions for the

same test stimuli.

1. INTRODUCTION

When speech and noise are additively combined, a single global
measure of the signal-to-noise ratio (SNR) is generally used to
define the overall energy relationship between the two signals.
For example, vowels contain more energy compared with
unvoiced stop consonants and a global SNR does not reflect how
low energy speech segments are more adversely affected
compared with high energy voiced sounds. The question under
consideration is how short duration, time-varying fluctuations in
the SNR affect identification performance. Only stop consonants

are considered in this study.

2. BACKGROUND

Miller and Licklider (3) considered the effect of fluctuating
background noise on the perception of continuous speech
material by measuring human identification performance in the
presence of regularly and randomly interrupted noise stimuli.

Various SNR (+9 to -18dB) and interruption rates were

10kHz.

performance with high interruption rates was considered similar

considered from 0.1Hz through to Identification
to continuous noise and the relationship between the interruption
rate and the syllable duration was believed to be a contributing

factor.

Studies by Howard-Jones et al. (5, 4) have considered the effect
of interruptions in both time and frequency using noise with a
time-frequency distribution that looks like a checkerboard. They
have reported that fluctuations in both time and frequency do
Their

proposal suggests that humans can make use of time-frequency

produce statistically different identification results.
“gaps” in the noise. Howard-Jones experiments have only

considered interaction using regular time interruptions of 10Hz.

The concept of time-varying fluctuations due to the phase of a
noise signal has been suggested in (7) and investigated in recent
perceptual studies by Summers and Leek (8). These studies
suggest that over short periods, the masking effectiveness of
noise varies. This supports the notion that short gaps in the noise
contribute to improved performance. Summers et al. (8) have
shown using an auditory model that variations in the phase of

signals produce different basilar membrane responses.

3. SIGNAL SEGMENTATION

In this series of experiments (10) six initial position stop
consonants /b,d,g,k,p,t/ are considered in the presence of non-
stationary office noise samples (6). Only the first 30ms from the
burst release of the stop consonants is used in the speech

material (Figure 1).

Three types of signals are generated for a given global SNR,
“speech plus noise” (S+N), “speech above plus noise” (A+N)
and “speech below plus noise” (B+N). The first signal (S+N) is
the typical case of combining the speech signal with noise at a
specified SNR. The other two combined signals require
measurement of the local RMS value for each signal (Figure 2)
calculation of the local SNR (Figure 3a) using non-overlapping

Ims windows at the same gain scaling factor used to generate
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Figure 1: (a) Speech signal and (b) office noise signal.
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Figure 2: RMS value for the signal and noise measured over
Ims intervals.

S+N. A mask is created based on whether the local SNR is
positive or strictly negative (Figure 3b). The mask is used to
extract regions of the speech signal with positive SNR (Figure 4)
which are subsequently combined with a continuous noise
sample. The third signal (B+N) is generated in an analogous
manner to the A+N signal except that the complement of the
mask is used to select the speech regions. Unlike (3), the speech

signal is segmented rather than the noise and much shorter

durations are considered compared with (5).

4. PERCEPTUAL EXPERIMENTS

4.1. Method

A stop consonant speech database consisting of two male and
two female speakers was prepared by excising the first 30ms of

initial position speech tokens /b,d,gk,p,t/ from continuous
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Figure 3: (a) Local signal-to-noise ratio. (b) Above mask.
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Figure 4: Above signal prior to being mixed with noise.

speech sentences in the same vowel and word contexts. All

speakers had Australian English accents.

Clean speech tokens were combined with three office noise
samples using three mixing conditions (S+N, A+N and B+N) at
four SNRs +2, 0, -2 and -4dB. Two blocks each containing the
complete

set of stimuli were presented using different

randomisation patterns.

The speech material was presented to a group of 20 listeners
consisting of approximately equal numbers of male and female
subjects with normal hearing. Experiments were conducted in a
sound treated room with audio presented through a Madsen
audiometer distributed to TDH-39 headphones. Presentation
levels were 70dB SPL. Subjects were presented with an
utterance and then entered their response using a touch screen
button. Voiced and unvoiced experiments were conducted
separately and listeners only selected one from three available

choices.

4.2. Results

Identification results for both voiced and unvoiced experiments

are shown in Figure 5. The S+N case produces the best overall
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Figure 5: Identification score for identifying the stop consonants
(both voiced and unvoiced) for different signal mixing
conditions and signal-to-noise ratios.

performance and represents the case for both continuous noise
and continuous speech. In keeping with expectations, as the
global SNR is decreased, identification performance also
decreases. For the mixing condition A+N, where only positive
SNR regions are included, the identification score lies slightly
below the S+N case at +2 and 0dB global SNR. The difference
between S+N and A+N becomes greater at negative global
SNRs. This arises from the relationship between the global SNR
and the number of speech regions included in the signal. As the
global SNR becomes more negative, the total number of local
positive SNR regions decreases. This can be visualised by
considering Figure 3a. If the dotted line is considered as the
threshold, then at negative SNRs the local SNR function (solid
line) shifts downward and the number of regions appearing
above the line decreases. At the same time, the number of
“below” regions increases. This is observed in the B+N case
(Figure 5) where decreasing global SNR yields increasing
performance. The A+N performance falls below that of B+N at -
4dB because the total duration of speech in the A+N signal is

quite small.

An interesting point to note is that at 0dB SNR where
approximately equal durations of speech are present, the
identification of the A+N condition is significantly greater than
B+N, suggesting that although partial segments of the speech
signal are presented, listeners perform better when presented

with only those regions of positive local SNR.

5. A TIME-FREQUENCY MODEL

A pattern classification model is proposed (10, 11) that is based
on the observed behaviour of human listeners when presented
with

successively longer stimuli durations using 1-5ms

increments. As the total stimuli duration increases human
performance also increases (9,1). Presentation of only the short
(<10ms) in

performance (1). One interpretation of these findings is that

duration increments isolation yields chance
speech perception is facilitated by the amalgamation of multiple

short duration spectral representations.

The perceptual results of this study indicate that humans can
make use of non-contiguous regions of positive local SNR more
effectively than signal containing negative regions. The speech
stimuli are segmented and can contain speech events with
minimum duration of 1ms or longer. This presents a challenge to
conventional speech processing techniques since typical analysis
window durations of 10-20ms are unable to reveal the short
duration events present in the signal. Fourier techniques using
Ims windows are avoided to circumvent the loss of frequency

resolution.

A positive time-frequency representation (2) is used to represent
the speech and noise signal and has been found to represent short
duration speech events more accurately than Fourier and Wigner
techniques avoiding the time-frequency trade-off and both

artefact and negative components (10).

A spectral comparison is made against a set of stored clean
templates for each 1ms spectral slice derived from the positive
time-frequency representation. An histogram of the set of best-
matching tokens is formed for each 1ms interval and integrated
over the 30ms interval (Figure 6). Templates are derived from
clean speech stimuli while test utterances are produced by

combining the clean stimuli with noise.

5.1. Results

By applying the same speech stimuli used in the perceptual
experiments, the identification results produced by the model
retain similar characteristics observed for human performance
(Figure 7). The identification score decreases for negative global
SNR for S+N and A+N, the A+N score deviates more from S+N
at negative SNRs indicating the decreased amount of speech,
B+N rises as the SNR is decreased although not as much as the
perceptual results and at 0dB SNR the A+N condition is better
identified compared with B+N despite containing approximately

the same durations of speech.
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Figure 6: Histograms for each 1ms interval (3D bar graph)
with the integrated result for each token. /p/ is the correct token
in this example.
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Figure 7: Identification performance produce by the model
6. SUMMARY

The time-varying properties of a speech and noise signal
produce fluctuations in the local signal-to-noise ratio.
Presentation of only the positive SNR regions appear to offer
more favourable conditions for the identification of speech
compared with regions of negative SNR. Using a model that
integrates short duration (1ms) spectral information derived
from a positive time-frequency distribution, identification
performance has been produced that supports the observations
found for human listeners. The model agrees with the hypothesis
that short duration regions of positive SNR are more beneficial

for identification.

7. ACKNOWLEDGEMENTS

I would like to thank Dr. Phillip Dermody and Dr. Chris Phillips

for their support and guidance during the evolution of this work.

8. REFERENCES
. Dermody, P. J., Perceptual Processing of Stop Consonants
as Initial Sounds in Spoken English, Ph.D. Thesis, The
University of New South Wales, January 1989.

2. Loughlin, P.J., Pitton, J.W., and Atlas, L.E., Construction
of Positive Time-Frequency Distributions, IEEE Trans.
Sig. Proc., 42(10), pp.2697-2795, October 1994.

3. Miller, G. A. and Licklider, J.C.R., The Intelligibility of
Interrupted Speech, JASA, 22 (2), pp.167-173, March
1950.

[

4. Howard-Jones, P. A. and Rosen, S., The Perception of

Speech in Fluctuating Noise, Acustica, 78, pp.258-272,
1993.

5. Howard-Jones, P. A. and Rosen, S., Uncomodulated
glimpsing in “checkerboard” noise, JASA, 93 (5),
pp-2915-2922, May 1993.

6. Raicevich, G., Noise Characterisation of Office Environ-

ments for Speech Recogniser Operation, SCRG Techni-
cal Report, National Acoustics Laboratory, Chatswood,
Australia, June 1991.

7. Schroeder, M. R. and Mehrgardt, S., Auditory Masking

Phenomena in the Perception of Speech, R. Carlson and
B. Granstrom (Ed.), The Representation of Speech in the
Peripheral Auditory System, Elsevier Biomedical Press,
1982.

8. Summers, V. and Leek, M.R., Masking of tones and

speech by Schroeder-phase harmonic complexes in nor-
mally hearing and hearing-impaired listeners, Hearing
Research, 118, pp.139-150, 1998.

9. Tekieli, M. E. and Cullinan, W. L., The Perception of Tem-

porally Segmented Vowels and Consonant-Vowel Sylla-
bles, Journal of Speech and Hearing Research, 22(1),
pp.103-121, March 1979.

10. Woo, D. T., Human Perception of Stop Consonants in
Noise: A Time-Frequency Model, Ph.D Thesis, The Uni-
versity of New South Wales, Australia. July 1998.

11. Woo, D. T., Dermody, P.J., and Phillips, C.J.E., Analysis
of Human Gating Performance Using Time-Frequency
Analysis, Proc. 1996 ANZIIS, Adelaide, Australia.
pp-117-119. November 1996.



