
 

FAVOURABLE AND UNFAVOURABLE SHORT DURATION 
SEGMENTS OF SPEECH IN NOISE

 

Daniel Woo

 

School of Electrical Engineering

The University of New South Wales

 

ABSTRACT

 

Human perceptual experiments are described that present listen-

ers with segmented stop consonant speech stimuli in noise. The

selection of short duration speech segments is based on a local

measure of the signal-to-noise ratio calculated over 1ms win-

dows. The aim is to create stimuli with known ßuctuations

occurring between a speech and noise sample to assess whether

the presence of short duration ÒgapsÓ in the noise produce

favourable and unfavourable signal regions that inßuence identi-

Þcation. Perceptual results are reported that suggest human lis-

teners make better use of signals that comprise only of positive,

local signal-to-noise ratio segments. Such regions are assumed to

be more favourable for stimuli identiÞcation. Presentation of

stimuli containing only negative signal-to-noise ratio regions

does not appear to contribute as much. A model that is based on

the accumulation of short duration spectral segments is presented

that produces a similar set of identiÞcation functions for the

same test stimuli.

 

1. INTRODUCTION

 

When speech and noise are additively combined, a single global

measure of the signal-to-noise ratio (SNR) is generally used to

deÞne the overall energy relationship between the two signals.

For example, vowels contain more energy compared with

unvoiced stop consonants and a global SNR does not reßect how

low energy speech segments are more adversely affected

compared with high energy voiced sounds. The question under

consideration is how short duration, time-varying ßuctuations in

the SNR affect identiÞcation performance. Only stop consonants

are considered in this study.

 

2. BACKGROUND

 

Miller and Licklider (3) considered the effect of ßuctuating

background noise on the perception of continuous speech

material by measuring human identiÞcation performance in the

presence of regularly and randomly interrupted noise stimuli.

Various SNR (+9 to -18dB) and interruption rates were

considered from 0.1Hz through to 10kHz. IdentiÞcation

performance with high interruption rates was considered similar

to continuous noise and the relationship between the interruption

rate and the syllable duration was believed to be a contributing

factor. 

Studies by Howard-Jones et al. (5, 4) have considered the effect

of interruptions in both time and frequency using noise with a

time-frequency distribution that looks like a checkerboard. They

have reported that ßuctuations in both time and frequency do

produce statistically different identiÞcation results. Their

proposal suggests that humans can make use of time-frequency

ÒgapsÓ in the noise. Howard-Jones experiments have only

considered interaction using regular time interruptions of 10Hz.

The concept of time-varying ßuctuations due to the phase of a

noise signal has been suggested in (7) and investigated in recent

perceptual studies by Summers and Leek (8). These studies

suggest that over short periods, the masking effectiveness of

noise varies. This supports the notion that short gaps in the noise

contribute to improved performance. Summers et al. (8) have

shown using an auditory model that variations in the phase of

signals produce different basilar membrane responses.

 

3. SIGNAL SEGMENTATION

 

In this series of experiments (10) six initial position stop

consonants /b,d,g,k,p,t/ are considered in the presence of non-

stationary ofÞce noise samples (6). Only the Þrst 30ms from the

burst release of the stop consonants is used in the speech

material (Figure 1).

Three types of signals are generated for a given global SNR,

Òspeech plus noiseÓ (

 

S+N

 

), Òspeech above plus noiseÓ (

 

A+N

 

)

and Òspeech below plus noiseÓ (

 

B+N

 

). The Þrst signal (

 

S+N

 

) is

the typical case of combining the speech signal with noise at a

speciÞed SNR. The other two combined signals require

measurement of the local RMS value for each signal (Figure 2)

calculation of the local SNR (Figure 3a) using non-overlapping

1ms windows at the same gain scaling factor used to generate



 

S+N

 

. A mask is created based on whether the local SNR is

positive or strictly negative (Figure 3b). The mask is used to

extract regions of the speech signal with positive SNR (Figure 4)

which are subsequently combined with a continuous noise

sample. The third signal (

 

B+N

 

) is generated in an analogous

manner to the 

 

A+N

 

 signal except that the complement of the

mask is used to select the speech regions. Unlike (3), the speech

signal is segmented rather than the noise and much shorter

durations are considered compared with (5).

 

4. PERCEPTUAL EXPERIMENTS

 

4.1. Method

 

A stop consonant speech database consisting of two male and

two female speakers was prepared by excising the Þrst 30ms of

initial position speech tokens /b,d,g,k,p,t/ from continuous

speech sentences in the same vowel and word contexts. All

speakers had Australian English accents.

Clean speech tokens were combined with three ofÞce noise

samples using three mixing conditions (

 

S+N

 

, 

 

A+N

 

 and 

 

B+N

 

) at

four SNRs +2, 0, -2 and -4dB. Two blocks each containing the

complete set of stimuli were presented using different

randomisation patterns. 

The speech material was presented to a group of 20 listeners

consisting of approximately equal numbers of male and female

subjects with normal hearing. Experiments were conducted in a

sound treated room with audio presented through a Madsen

audiometer distributed to TDH-39 headphones. Presentation

levels were 70dB SPL. Subjects were presented with an

utterance and then entered their response using a touch screen

button. Voiced and unvoiced experiments were conducted

separately and listeners only selected one from three available

choices.

 

4.2. Results

 

IdentiÞcation results for both voiced and unvoiced experiments

are shown in Figure 5. The 

 

S+N

 

 case produces the best overall

 

Figure 1: 

 

(a) Speech signal and (b) ofÞce noise signal.

 

Figure 2: 

 

RMS value for the signal and noise measured over
1ms intervals.
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Figure 3: 

 

(a) Local signal-to-noise ratio. (b) Above mask.

 

Figure 4: 

 

Above signal prior to being mixed with noise.
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performance and represents the case for both continuous noise

and continuous speech. In keeping with expectations, as the

global SNR is decreased, identiÞcation performance also

decreases. For the mixing condition 

 

A+N

 

, where only positive

SNR regions are included, the identiÞcation score lies slightly

below the 

 

S+N

 

 case at +2 and 0dB global SNR. The difference

between 

 

S+N

 

 and 

 

A+N

 

 becomes greater at negative global

SNRs. This arises from the relationship between the global SNR

and the number of speech regions included in the signal. As the

global SNR becomes more negative, the total number of local

positive SNR regions decreases. This can be visualised by

considering Figure 3a. If the dotted line is considered as the

threshold, then at negative SNRs the local SNR function (solid

line) shifts downward and the number of regions appearing

above the line decreases. At the same time, the number of

ÒbelowÓ regions increases. This is observed in the 

 

B+N

 

 case

(Figure 5) where decreasing global SNR yields increasing

performance. The 

 

A+N

 

 performance falls below that of 

 

B+N

 

 at -

4dB because the total duration of speech in the 

 

A+N

 

 signal is

quite small.

An interesting point to note is that at 0dB SNR where

approximately equal durations of speech are present, the

identiÞcation of the 

 

A+N

 

 condition is signiÞcantly greater than

 

B+N

 

, suggesting that although partial segments of the speech

signal are presented, listeners perform better when presented

with only those regions of positive local SNR.

 

5. A TIME-FREQUENCY MODEL

 

A pattern classiÞcation model is proposed (10, 11) that is based

on the observed behaviour of human listeners when presented

with successively longer stimuli durations using 1-5ms

increments. As the total stimuli duration increases human

performance also increases (9,1). Presentation of only the short

duration increments (<10ms) in isolation yields chance

performance (1). One interpretation of these Þndings is that

speech perception is facilitated by the amalgamation of multiple

short duration spectral representations.

The perceptual results of this study indicate that humans can

make use of non-contiguous regions of positive local SNR more

effectively than signal containing negative regions. The speech

stimuli are segmented and can contain speech events with

minimum duration of 1ms or longer. This presents a challenge to

conventional speech processing techniques since typical analysis

window durations of 10-20ms are unable to reveal the short

duration events present in the signal. Fourier techniques using

1ms windows are avoided to circumvent the loss of frequency

resolution.

A positive time-frequency representation (2) is used to represent

the speech and noise signal and has been found to represent short

duration speech events more accurately than Fourier and Wigner

techniques avoiding the time-frequency trade-off and both

artefact and negative components (10). 

A spectral comparison is made against a set of stored clean

templates for each 1ms spectral slice derived from the positive

time-frequency representation. An histogram of the set of best-

matching tokens is formed for each 1ms interval and integrated

over the 30ms interval (Figure 6). Templates are derived from

clean speech stimuli while test utterances are produced by

combining the clean stimuli with noise. 

 

5.1. Results

 

By applying the same speech stimuli used in the perceptual

experiments, the identiÞcation results produced by the model

retain similar characteristics observed for human performance

(Figure 7). The identiÞcation score decreases for negative global

SNR for 

 

S+N

 

 and 

 

A+N

 

, the 

 

A+N

 

 score deviates more from 

 

S+N

 

at negative SNRs indicating the decreased amount of speech,

 

B+N

 

 rises as the SNR is decreased although not as much as the

perceptual results and at 0dB SNR the 

 

A+N 

 

condition is better

identiÞed compared with 

 

B+N

 

 despite containing approximately

the same durations of speech. 

 

Figure 5: 

 

IdentiÞcation score for identifying the stop consonants
(both voiced and unvoiced) for different signal mixing
conditions and signal-to-noise ratios.
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6. SUMMARY

 

The time-varying properties of a speech and noise signal

produce ßuctuations in the local signal-to-noise ratio.

Presentation of only the positive SNR regions appear to offer

more favourable conditions for the identiÞcation of speech

compared with regions of negative SNR. Using a model that

integrates short duration (1ms) spectral information derived

from a positive time-frequency distribution, identiÞcation

performance has been produced that supports the observations

found for human listeners. The model agrees with the hypothesis

that short duration regions of positive SNR are more beneÞcial

for identiÞcation.

 

7. ACKNOWLEDGEMENTS

 

I would like to thank Dr. Phillip Dermody and Dr. Chris Phillips

for their support and guidance during the evolution of this work.

 

8. REFERENCES

 

1. Dermody, P. J., 

 

Perceptual Processing of Stop Consonants

as Initial Sounds in Spoken English

 

, Ph.D. Thesis, The

University of New South Wales, January 1989.

2. Loughlin, P.J., Pitton, J.W., and Atlas, L.E., 

 

Construction

of Positive Time-Frequency Distributions

 

, IEEE Trans.

Sig. Proc., 42(10), pp.2697-2795, October 1994.

3. Miller, G. A. and Licklider, J.C.R., 

 

The Intelligibility of

Interrupted Speech

 

, JASA, 22 (2), pp.167-173, March

1950.

4. Howard-Jones, P. A. and Rosen, S., 

 

The Perception of

Speech in Fluctuating Noise

 

, Acustica, 78, pp.258-272,

1993.

5. Howard-Jones, P. A. and Rosen, S., 

 

Uncomodulated

glimpsing in ÒcheckerboardÓ noise

 

, JASA, 93 (5),

pp.2915-2922, May 1993.

6. Raicevich, G., 

 

Noise Characterisation of OfÞce Environ-

ments for Speech Recogniser Operation

 

, SCRG Techni-

cal Report, National Acoustics Laboratory, Chatswood,

Australia, June 1991.

7. Schroeder, M. R. and Mehrgardt, S., 

 

Auditory Masking

Phenomena in the Perception of Speech

 

, R. Carlson and

B. Granstrom (Ed.), The Representation of Speech in the

Peripheral Auditory System, Elsevier Biomedical Press,

1982.

8. Summers, V. and Leek, M.R., 

 

Masking of tones and

speech by Schroeder-phase harmonic complexes in nor-

mally hearing and hearing-impaired listeners

 

, Hearing

Research, 118, pp.139-150, 1998.

9. Tekieli, M. E. and Cullinan, W. L., 

 

The Perception of Tem-

porally Segmented Vowels and Consonant-Vowel Sylla-

bles

 

, Journal of Speech and Hearing Research, 22(1),

pp.103-121, March 1979.

10.  Woo, D. T., 

 

Human Perception of Stop Consonants in

Noise: A Time-Frequency Model

 

, Ph.D Thesis, The Uni-

versity of New South Wales, Australia. July 1998.

11. Woo, D. T., Dermody, P.J., and Phillips, C.J.E., 

 

Analysis

of Human Gating Performance Using Time-Frequency

Analysis

 

, Proc. 1996 ANZIIS, Adelaide, Australia.

pp.117-119. November 1996. 

 

Figure 6: 

 

Histograms for each 1ms interval (3D bar graph)
with the integrated result for each token. /p/ is the correct token
in this example.

 

Figure 7: 

 

IdentiÞcation performance produce by the model
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