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ABSTRACT

In this paper, we propose a novel implementation of a min-
imax decision rule for continuous density hidden Markov
model based robust speech recognition. By combining the
idea of the minimax decision rule with a normal Viterbi
search, we derive a recursive minimax search algorithm,
where the minimax decision rule is repetitively applied to
determine the partial paths during the search procedure.
Because of its intrinsic nature of a recursive search, the
proposed method can be easily extended to perform contin-
uos speech recognition. Experimental results on Japanese
isolated digits and TIDIGITS, where the mismatch between
training and testing conditions is caused by additive white
Gaussian noise, show the viability and e�ciency of the pro-
posed minimax search algorithm.

1. INTRODUCTION

It is well known now that the mismatches between training
and testing conditions will considerably degrade the perfor-
mance of an automatic speech recognition (ASR) system.
How to maintain the recognizer's performance under vari-
ous mismatches has recently become one of the hottest top-
ics in the area of robust speech recognition. The so-called
\compensation/adaptation" approaches [3], which aim at
reducing the involved mismatches as much as possible, have
formed the mainstream of the current robust speech recog-
nition technology. However, in the past few years, based
on robustness theory, some works have been performed to
modify the basic decision rule of the ASR system. Instead
of directly compensating for the underlying mismatches, the
decision rule of the ASR system is designed to be inherently
robust to the possible unknown mismatches. This scheme
becomes a potential approach for robust ASR because no
rigid assumptions about the sources and mechanisms of the
mismatches have to be made. Two sets of robust decision
rules for ASR, namely, minimax decision rule [4, 1] and
Bayesian Predictive Classi�cation (BPC) rule [1, 2], have
been studied. In [4], Merhav and Lee �rst mentioned the
minimax rule in speech recognition community and pro-
posed an implementation for isolated word recognition task.
In [1], a so-called Bayesian minimax method was proposed
to perform a minimax decision under a Bayesian framework.
In both of these existing minimax implementations, instead
of dynamically searching a desired answer in a structural
network representation of all possible hypotheses, decisions

are made only from a list of �nite candidates. This makes
them di�cult to be extended to perform continuous speech
recognition (CSR) except in an N-Best rescoring mode.

In this paper, we combine the idea of the minimax rule
with a normal Viterbi search to derive a recursive minimax
search algorithm for CDHMM (continuous density hidden
Markov model) based speech recognition. Because of its
intrinsic nature of a recursive search, the approach can be
easily extended to perform CSR. A series of experiments
are performed on the recognition of isolated digits and TI
connected digit strings (TIDIGITS), where the mismatch
between training and testing conditions is caused by addi-
tive white Gaussian noise (AWGN). The experimental re-
sults show that: i) For the isolated digit recognition task,
in comparison with the standard Plug-in-MAP method, all
three minimax algorithms are able to improve the robust-
ness considerably, while the proposed algorithm perform-
s the best; ii) For connected digit task (TIDIGITS), the
proposed minimax search algorithm also achieves a much
better performance than that of the conventional Viterbi
search algorithm. The increased computational overhead is
a�ordable, at least in this small vocabulary task.

2. TWO PREVIOUS MINIMAX METHODS

FOR ROBUST ASR

We model each speech unit W with an N -state CDHMM
with parameter vector � = (�;A; �), where � is the initial
state distribution; A = faij j 1 � i; j � Ng is the transition
matrix; and � is the parameter vector composed of mixture
parameters �i = f!ik;mik; rikgk=1;2;���;K for each state i.
The state observation probability density function (pdf) is
assumed to be a mixture of K multivariate Gaussian pdf's
with the mixture coe�cients !ik, the D-dimensional mean
vectorsmik, and the diagonal precision (inverse covariance)
matrices rik.

In [4], the true parameters of the CDHMM's are assumed
to lie within a neighborhood �(�) of the pre-trained models'
parameters. Such an uncertainty neighborhood is paramet-
rically de�ned as follows:
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where constants C (C > 0) and � (0 � � � 1) are used to
control respectively the possible mismatch size and shape;



and f��i ; a
�
ij;m

�
ikd; r

�
ikg denote the pre-trained model pa-

rameters. Given an observed feature vector sequence X to
be recognized, a minimax decision rule is derived in [4] as:

Ŵ = argmax
W

[ p(W ) � max
�2�(�)

p(Xj�;W ) ] (2)

where Ŵ is the recognition result. In this paper, the above
Merhav & Lee's implementation of the minimax decision
rule is referred to as minimax1 for convenience.

Another so-called Bayesian minimax rule proposed in [1]
works as follows:

Ŵ = argmax
W

p(X j �MAP ;W ) (3)

where

�MAP = argmax p(X j�;W ) � p(� j';W ) (4)

with the prior pdf p(� j';W ) chosen as the best normal ap-
proximation to the constrained uniform distribution within
the neighborhood �(�) in eq.(1). In this approach, the min-
imax rule is realized under a Bayesian framework, where
the least favorable parameters are obtained by an iterative
MAP estimate. This Bayesian minimax method will be de-
noted as minimax2 thereafter.

As we mentioned before, it is di�cult for both the mini-
max1 and minimax2 to be extended to perform CSR except
in an N-Best rescoring mode.

3. MINIMAX SEARCH FOR ROBUST

CONTINUOUS SPEECH RECOGNITION

In order to execute the minimax decision rule in robust C-
SR, we combine the idea of the minimax rule (minimax1)
with the normal Viterbi search to derive a recursive mini-
max search algorithm as follows:

Ŵ = argmax
W

[p(W ) �max
s;l

max
�2 �(�)

p(X; s; l j�;W )] (5)

where s is the unobserved state sequence and l is the associ-
ated sequence of the unobserved mixture component labels
corresponding to the observation sequence X.

In our implementation, for every time instant, the least
favorable model parameters in the minimax rule are esti-
mated based on each active partial path via only one itera-
tion; then the score of the partial path can be re-computed
by using the estimated least favorable parameters accord-
ingly. Based on these re-computed scores, all the active
partial paths are propagated in the network in a similar
way as in the normal Viterbi search. The recursive mini-
max search is named as minimax3 in this paper.

Given a test utterance X = (x1; x2; � � � ; xT ), CDHMM
parameter � as well as its corresponding uncertainty neigh-
borhood �(�)1, the recursive search algorithm to approxi-

mately achieve the minimax3 decision rule in eq.(5) is de-
scribed as follows:

1The neighborhood eq.(1) is still adopted for �(�) here, in

which only the uncertainty of mean vectors is taken into account.

(1) Initialization (t = 0)

�0(i) = �i 1 � i � N (6)

 0(i) = 0 1 � i � N (7)

�0(i) = 0 1 � i � N (8)

where �t(i) denotes the score of the optimal partial
path arriving at state i at the time instant t. The cor-
responding best partial path is represented by a chain
of state points started from  t(i) and a chain of mix-
ture component label points started from �t(i).

(2) Recursion: for 1 � t � T , 1 � j � N , do

(2.1) Path-merging in state j:
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where

�mjkd =

8><
>:

mjkd � Cd�1�d if xtd � mjkd � Cd�1�d

mjkd if mjkd � Cd�1�d � xtd

� mjkd + Cd�1�d

mjkd + Cd�1�d if xtd � mjkd + Cd�1�d

(12)

(2.2) Estimate the least favorable parameters �� for all
active partial paths:

�
�
= arg max

�2�(�)
p(x1; � � � ; xt; s t(i); l�t(i) j �)

where s t(i) and l�t(i) denote respectively the s-
tate sequence and the mixture component label se-
quence corresponding to the active optimal partial
path backtracked from the points  t(i) and �t(i).
When the neighborhood eq.(1) is adopted, only the
mean vectors are adjusted. Thus all the mean vec-
tors mik(1 � i � N; 1 � k � K) of CDHMM are
re-estimated as follows:
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else

�mikd = mikd (1 � d � D) (14)

where s
(�)

 t(i)
and l

(�)

�t(i)
denote respectively the state

and mixture component labels corresponding to the
time instant � in the partial path backtracked from
the points  t(i) and �t(i).



Then the least favorable mean vectors are calcu-
lated as: (for all 1 � i � N , 1 � k � K and
1 � d � D)

m
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(15)

(2.3) Re-score the partial path based on the updated
least favorable parameters
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(3) Termination

s
�
T = argmax

i

�T (i) (17)

(4) Path Backtracking

s
�
t =  t+1(s

�
t+1) t = T � 1; T � 2; � � � ; 1 (18)

The �nal recognition result Ŵ can be derived from the
optimal path f s�t j t = 1; 2; � � � ; T g.

Because of its intrinsic nature of recursive search, mini-
max3 can be easily extended to perform continuous speech
recognition. In comparison with the normal Viterbi algo-
rithm, minimax3 needs extra e�orts to re-score each active
partial path during the search process. However, if the size
of the network to be examined is moderate, the increased
computational cost is generally a�ordable.

4. EXPERIMENTS AND RESULTS

In order to examine the viability of the proposed minimax3
algorithm, we present a series of experiments where the min-
imax3 algorithm is compared with other existing method-
s. Firstly, in an isolated Japanese digit recognition task,
minimax3 is compared with the Plug-in-MAP based Viter-
bi algorithm, minimax1 and minimax2. As a remark, only
a Viterbi version of the minimax2 in [1] is implemented
here. Next, in another connected word recognition task on
TIDIGITS, minimax3 is compared with the conventional
Viterbi search in terms of both the recognition accuracy
and computational complexity. In all the experiments, the
mismatch between training and testing conditions is caused
by adding, at di�erent SNR (signal-to-noise ratio) level-
s, computer-generated white Gaussian noise (AWGN) into
the test data prior to the pre-processing stage. The AWGN
is scaled to a �xed level for all utterances in the test set.
The degree of mismatch is measured by SNR level (in terms

Table 1. Performance (word accuracy in %) com-

parison of minimax3 with Plug-in-MAP, minimax1

and minimax2 in isolated Japanese digit recognition

task when test data are distorted by AWGN.

SNR Plug-in MAP minimax1 minimax2 minimax3

1 98.50 99.58 99.58 99.58

30(dB) 62.08 73.33 71.67 77.50

20(dB) 26.10 57.92 53.33 61.67

10(dB) 5.42 28.33 26.25 33.33

of dB) of the contaminated speech, which is calculated over
the whole testing set as follows:

SNR
4
= 10 log10

P
i2S

�s(i)P
i2S

�n(i)
(19)

where �s(i) denotes the signal variance of the ith speech
utterance in test set S, and �n(i) the variance of noise signal
added to the ith utterance. However, no knowledge of the
related mismatch is explicitly exploited in testing phase.

4.1. Isolated Digit Recognition: ATR-JPD

In order to compare the performance of minimax3 with
other two previous minimax methods (minimax1 and mini-
max2), we �rst perform a series of comparative experiments
on a speaker-independent (SI) recognition task of isolated
Japanese digits on the ATR-JPD database, which is selected
from ATR Japanese Speech Database and contains isolat-
ed utterances of Japanese 0-9 digits from 60 speakers (half
male, half female). The database ATR-JPD is recorded
in a quiet environment at a sampling rate of 20kHz with
16bit quantization accuracy. Each digit is modeled by a
left-to-right 4-state CDHMM without state skipping and
each state has 6 Gaussian mixture components with diago-
nal covariance matrices. Each feature vector consists of 16
LPC-derived cepstral coe�cients. For each digit, in total,
we have 56 tokens from 46 speakers for SI training, and 24
tokens from other 14 di�erent speakers for SI testing.

In Table 1, the averaged recognition accuracy of the min-
imax3 is compared with that of the standard Plug-in-MAP
based Viterbi search algorithm, minimax1, and minimax2
at three SNR levels of 10(dB), 20(dB) and 30(dB). The
experimental results clearly show that all three minimax
algorithms are able to improve the robustness considerably
in comparison with the standard Plug-in-MAP based Viter-
bi algorithm when the AWGN-caused mismatch exists be-
tween the training and testing conditions. We also note that
minimax3 signi�cantly outperforms both the minimax1 and
minimax2 in the examined SNR levels. This can be ex-
plained by the fact that the minimax rule is repetitively
applied during the recursive minimax3 search, which war-
rants to �nd a better path than both minimax1 and min-
imax2 in which the minimax rule is only used to re-score
the paths found by the normal Viterbi search. We have
to note that in Table 1 we only report the optimal per-
formance for all three minimax methods when the hyper-
parameters (C; �) are manually adjusted within the range:



Table 2. Performance (in %) comparison of mini-

max3 (mm3) with Plug-in-MAP (PIM) method on

TIDIGITS when test data are distorted by AWGN

SNR Str Wd-C Wd-A Del Sub Ins

1 PIM 88.14 98.44 97.34 0.69 0.87 1.10

mm3 87.64 98.43 97.20 0.65 0.92 1.22

36.8 PIM 17.45 67.37 66.28 16.22 16.40 1.09

(dB) mm3 64.78 95.49 90.0 0.90 3.60 5.49

27.3 PIM 0.23 45.25 43.90 25.10 29.70 1.40

(dB) mm3 42.03 87.29 79.03 2.67 10.0 8.26

16.8 PIM 0.0 24.89 23.93 45.40 29.70 0.96

(dB) mm3 14.47 66.19 57.52 7.60 26.20 8.70

Table 3. Comparison of the total recognition time

(in seconds) of 300 TIDIGITS utterances on a

SUN Utra-I workstation between the minimax3 and

Plug-in-MAP based Viterbi search

Viterbi minimax3

CPU time used (s) 771.94 1538.73

C 2 [1; 10] and � 2 [0:1; 0:9]. Besides the optimal per-
formance in Table 1, we also observed in our experiments
that minimax1, minimax2 and minimax3 outperform the
Plug-in-MAP method for a wide range of (C; �). However,
we have not found a good method yet to automatically ad-
just (C; �) for the optimal performance in all these minimax
methods.

4.2. Connected Word Recognition: TIDIGITS

In order to examine the feasibility of the minimax3 in terms
of its computational complexity in a continuous speech
recognition task, we also perform a series of comparative
experiments of SI connected digits recognition on TIDIG-
ITS English connected digit-string database. Only the part
of adult speech data (111 men, 114 women) is used in the
experiments. The feature vector consists of 12 LPC-derived
cepstral coe�cients, energy, and their delta features. Be-
cause we are using the delta features, the mean vector mik

consists of static feature in the low dimensions and delta
feature in the high dimensions. The uncertainty neighbor-
hood of � de�ned in eq.(1) is slightly modi�ed to take delta
feature into account. The SI model for each digit is a 10-
state, 10-mixture-per-state CDHMM. All digit HMMs are
trained on 8623 utterances from adult training data subset
of TIDIGITS. The algorithms are evaluated on 8700 utter-
ances from adult test data subset distorted by various levels
of AWGN.

The experimental results2 in Table 2 show that the min-
imax3 performs much better than the conventional Viterbi
algorithm for the examined SNR levels. As far as the com-
putational complexity is concerned, in minimax3, the in-
creased computation mainly lies in: i) estimating the least
favorable parameters as in eqs.(13) and (15); ii)re-scoring

2
where Str stands for string correct rate, Wd-C for word

correct rate, Wd-A for word accuracy, Del, Sub and Ins for

deletion, substitution and insertion error rates respectively.

the partial path in eq.(16). However, in each search step,
only a small portion of the individual partial path need
to be re-calculated while the most part of it remains un-
changed as in eq.(14). In the experiment, we observed that
in this small vocabulary task where the recognition network
is not very large, the calculation overhead of the minimax3
is a�ordable. As an example, we list in Table 3 the total
CPU time used by Viterbi and minimax3 full searches (i.e.,
the beam width is set to in�nity) to recognize in total 300
utterances randomly chosen from the test set of TIDIGITS.
The CPU time in Table 3 show that the computational com-
plexity is approximately doubled in the minimax3 search in
comparison with the normal Viterbi search.

5. DISCUSSIONS AND CONCLUSIONS

From the above experimental results, it is found that given
an appropriate uncertainty neighborhood, the robustness of
an ASR system can be enhanced by adopting the minimax
decision rule. The proposed minimax search algorithm is
shown to be e�ective and e�cient for the examined smal-
l vocabulary tasks of either isolated words or continuous
speech. As future works, we need to develop some meth-
ods to automatically determine the hyperparameters (C; �)
of the uncertainty neighborhood. We should also consider
other possibility in uncertainty modeling such as the dis-

tribution uncertainty in stead of the current practice of the
model parameter uncertainty.
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