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training algorithm under noisy conditions to gain insight of the
ABSTRACT relationship between the optimal stream weights and SNR.
) ) Moreover, since each weight can be treated as a function of
This paper presents a method to improve the robustness R we are able to obtain the weights for an unseen SNR by
speech recognition in noisyowditions. It has been shown jyierpolating the known points. During recognition, the SNR
that using dynamic features in addition to static features cgjp he noisy speech signal is first estimated. The stream
improve the noise robustness ofesph recognizers. In this \yeights at that SNR are then calculated and updated. It is

work we show that in a continuous-density Hidden Markoy, by noting that the calculation of weights at the recognition
Model (HMM) based speech recognition system, weighting t@tage is very simple and straightforward.
contribution of the dynamic features according to SNR levels

can further improve the performance, and we propose a two-stepis paper is organized as follows. In the next section we
scheme to adapt the weights for a given Signal to Noise Raiittroduce the multi-stream HMM and the exponent stream
(SNR). The first step is to obtain the optimal weights for a seteights. We start section 3 by reviewing the GPD formulation,
of selected SNR levels by discriminative training.  Thewhich is then followed by the derivation of the formulas used in
Generalized Probabilistic Decent (GPD) framework is used ithe discriminative training of the weights. The two-step
our experiments. The second step is to interpolate the setpaframeter interpolation scheme is discussed in section 4. We
SNR-specific weights obtained in step one for a new SNBresent the experimental results in section 5 and conclude the
condition.  Experimental results obtained by the proposesiork in section 6.

technique is encouraging. Evaluation using speaker

independent digits with added white Gaussian noise shows

significant reduction in error rate at various SNR levels. 2. STREAM WEIGHTING IN MULTI-
STREAM HMM

1. INTRODUCTION Let's first consider a typical single-stream continuous-density
HMM. The output distributionn ; (g ) of model i, statej,

) _Siven the observation vector at timg is represented by a
trying to tralfyi.re of Gaussian densities. The formula for computing

HMM based speech recognizers perform well if trained an
tested under matched conditions. However,

models for all possible environments and SNR levels 'ﬁ-(Q) is

impractical. Therefore one way to solve this problem is to"

compensate models trained on clean speech to give adapted M

models that are more robust to noise. It is desired that the b,(a) —2 Gim NCQ K jm Zim) @)

compensation method be computational inexpensive so that the

models can be quickly adjusted to suit the noise conditions. . . .
where M is the number of mixture components,;, is the

It is well known that using dynamic features in addition to statizeight of the m'th component andN(X,tijm.Zijm) iS a
features can improve the noise robustness eéaprecognizers. multivariate Gaussian with mean vectayr, and covariance
In this work we demonstrate that weighting the contribution ohatrix ;. The mixture weights;;, in the above equation
the dynamic features according to SNR levels can furth@re nonnegative and add up to one.

improve the performance in multi-stream HMM speecr)A

recognition systems. single-stream HMM can be used to model both static and

dynamic features of sgch if we concatenate the static and
In such a system, the static and dynamic features within eadynamic features to form a single observation vector.

HMM are modeled by two separate streams. For each stre . . .
y P ﬂgwever, if we assume that the static features and the dynamic

in each state of each model, arpexential weight is used to i watistically ind dent. th t them int
control this particular stream's contribution to the outpuqea ures are statistically independent, then we can put them into

probability. The objective is to adjust these stream weights 36’0 separa te streams. Lets denqte the Sta_tIC observation
that the recognition error is minimized. Recently man)\/ector at timet by 0, and Fhe dyna_lmlc observation vector by
researchers have shown that discriminative training method&t the formula for computing;;(o;) is then

especially the GPD algorithm, are effective in finding the stream

weights that minimize the recognition error [2]. However,

majority of the reported experiments are carried out using clean

speech. In our experiment, we apply the discriminative
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whereC(x) denotes the recognition decisions>gnC' denotes
Putting static and dynamic features into separate streams allasksssi, and A denotes the HMM parameter set including the
us to introduce exponent stream weights to contath stream weights. The discriminative functiog, (x;A) is
stream’s contribution to the final output probability, and thuglefined as
weighting the “importance” of each feature stream in the model.

The formula for computing the output probability using the 5|j’
exponent stream weights is g (GA)=In {P(X,@i I/\)} 5
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where ©, is any allowable state sequence for itie HMM
class, i.e.

where y;s is the weight of streans of statej in modeli. 0 ={8,...6,..} (6)
Notice that since the newy;(o;) does not satisfy stochastic ' ; '

constrains in general, equation (3) is no longer a probability )
mass function. When &=1, equation (5) becomes the standard HMM log

likelihood probability, which is usually computed using the
The exponent stream weightgs in equation (3) are model and forward-backward algorithm.  Whenf =« , equation (5)
state specific, i.e. for each state in each model, there is a spediiuces to the log likelihood of the Viterbi best path. Let's
set of stream weights. However, the weights can also be tindw redefine © as the Viterbi state sequence for the
at various levels. Two possible ways of tying are tying at theorresponding HMM,
global level and tying at the class level. In the first case, all

states from all models share the same set of stream weights, ©={66-..8,...} (7
and in the second case, all states in the same HMM have the
same stream weights. then g, (x;A\) is simplified to

The main focus of the current work is to improve the noise T T,

robustness of automatic exch reognition by finding the 9 (X?/\):”‘(7?,91)”Z'”(ay,a[_l,s[)’“Z'“(b,al(‘?)) (8)

optimal stream weights at a given SNR level. In the training = =

stage, we use discriminative methods to adjust the weights to . . ) )

achieve minimum recognition rate.  We discuss th&N€re o is the feature vector of observativmt timet, 17, is

discriminative training in the next section. the initial probability of state in thei'th HMM, a4 ,, is the
state transition probability from statg_, to g in the i'th

HMM, B, () is the output probability of staté for o , and
3. DISCRIMINATIVE TRAINING T, is the total number of feature vectors in the observation

The second step of GPD formulation is to introduce a
misclassification measure in order to embed the decision
minimum  classification error Process in a function form.  The misclassification measure for
glassi is defined by

3.1. Minimum Error Classification

Discriminative training for
attempts to minimize a function of recognition errors on

closed data set. The most important aspect of minimum error i

L . . . . . . . 01
classification is the definition of a suitable objective function, d (X'/\): —g(X'/\)+InI] zeXF{ﬂg- (x -/\)]D )
the minimization of which is directly related to the minimization ' OM -1,4 : O

of the empirical error rate. The objective function should be a

smooth differentiable function of the HMM parameters (th : o .

exponent stream weights in our case), with an easily computal gr?z?latyﬁn(;zrridp\?vilgxeclggsr?f?/?r:é thdé()é’u/r\r)enf az)lgz(l:tve:m:;e
first order derivative, so that the gradient descent algorithms CAlbi'th class.

be used to minimize the recognition error.

The third step is to define a smooth loss functipgx; A) for
ach class based on the misclassification measure. hise
the sigmoid function in our implementation. Therefore

The objective function is derived by the three-step procedu
prescribed in the GPD formulation [1].

3.2. GPD Formulation LOCA) = 1 (10)
The first step of the formulation is to define an appropriate 1+ exp(—a[di & ;A)_B])

discriminant function g, (x; A) which is used to implement the

following decision rule The constanir and 8 control the slope and mid-point of the

sigmoid. Botha and 8 are positive real numbers and are
determined experimentally.



3.3. Adaptive Learning ad (x;A) _ _9g (xA)

. . . . dyi,js dyijs
If x is a labeled training sample of classhen the loss incurred (17)
when this sample is presented;{s;A). This is the objective .J(Q))
function used in our experiments. The parameter/\ses 25(9
adjusted recursively when each training sample is presented. he
Let x, be then'th training sample and\..; be the parameter set ) )
after x, is applied. ThenA,, can be calculated by the USINg €quation (3), we can obtain
following rule 0|n(|q,j(q)) _ " N( . )D "
/\n+l:/\n+A/\n (12) dyi” - né({js,m Os 01 i j s, i,j,s,m% (18)
where Now, given a labeled training sampte we can readily use
AN, =—g(MUOI(x,,;A,) (12) equation (14) to update the corresponding stream weights.

In equation (12),U is a positive definite matrix,0is the 4. PARAMETER INTERPOLATION
gradient operator, ang(n) is a monotonic decreasing function
of n that gives a small positive learning rate. In thisrhe parameter interpolation procedure involves two steps for a

experiment we use given type of noise corruption.

a In the first step, we obtain the optimal stream weights at a set of
&(n) = b+ nc (13) known SNR levels. These SNR settings should cover a wide
range of noise levels so that interpolation in the following step
is feasible. We start with a set of multi-stream HMMs that are
trained using clean speech. At each SNR setting, the stream

where a, b, and ¢ are experimentally determined positive

copsta}nts. Assuming) to be the |de.nt|ty matrix, .the eights in these HMMs are adjusted to achieve minimum
adjusting formula (11) for the exponent weights of equation ( i S - .
b cognition error by the discriminative training algorithm
ecomes : . . . . . .
discussed in the previous section using noisy speech with
" A (x,; A . : corresponding SNR. This step is done in the training stage.
v =y mem 2e el e =c g
Viis The second step is carried out in the recognition stage when a

test utterance with an unseen SNR is presented. The goal of
One can also use the empirical loss as the objective functidhe interpolation is to calculate the stream weights that can
which is calculated by summing ugx;A) over all training reduce the recognition error without having to go through the
samples of all classes. In this case, the parameters are upd&t@iting stage for all SNRs. Let be the total number of the

after all samples in the training set is presented. stream weights. Then the interpolation process for a new SNR
can be viewed as finding the trajectory along the existing SNR s
3.4. Differentiate the Loss Function for them-dimensional stream weights. A simpler alternative is

to assume the weights are independent to each other. And
To realize the adaptive learning algorithm described in thgeat each of them as a separate function of SNR. Thus the
previous section, it is necessary to calculate the derivatives jiferpolation becomesm independent 1-D interpolations.
the loss function with respect to the exponent stream weighiSnear interpolation using the exponent weights of the two
The computation of the derivatives is accomplished by applyingeighboring SNR conditions is used in this experiment for its

the chain rule, i.e., simplicity.
A oAy _ dl(d (GA) ad (x:A)
., dd A Eﬁddyi,js (1) 5. EXPERIMENTS

The first term in the right hand side of equation (15) can bé'l' EXpe”mental Paradlgm

evaluated as The experiments were conducted using the speaker independent
2 isolated digit Tl database. The data was pre-processed using a
dli(di (X;/\)) = al‘(di (X;/\)) (16) 25 ms Hamming window and has a 10 ms frame shift. For
dd; (x;A\) exp(ar(di ()(;/\)—[3)) each frame, a set of 15 MFCC coefficients with an analysis
order of 24 were computed. The delta coefficients were also
Iculated For each digit, a HMM with 8 emitting states and
au55|an density for each state was trained by EM method
using clean speech data. Bémal covariance matrices were
used in the HMMs.

Assuming the exponent stream weights to be model and st§
specific, and upon differentiating the second term, we get



The discriminative training programs were built using the HTH

library functions. The stream weights for six SNR levels df
0dB, 10dB, 20dB, 30dB, 40dB, and 50dB were discriminatively.

adjusted to minimize recognition error at the given SNR. THe

stream weights had been initialized to pg=1 for alli, j, s

prior to the discriminative training. The noisy speech sampl¢s

were synthesized by adding white Gaussian noise to the clgan

speech.

SNR (dB) | No Delta Wwt.=1 GPD. P.l..
5 18.4 21.9 41.3 39.4
15 31.4 49.8 60.6 59.1
25 42.9 72.4 81.6 80.6
35 64.8 89.8 91.8 91.4
45 83.5 95.6 96.8 95.9

. . Table 1.
To evaluate the proposed parameter interpolation scheme, 5 test

data sets with unseen SNR levels were evaluated using the

stream weights obtained from interpolation. The results are

shown and discussed next.

Summary of recognition accuracy (%)

6. CONCLUSIONS

5.2. Results

We considered the problem of HMM stream weighting in the
context of robust noisy sgech recognition. We pposed a
two-step parameter interpolation scheme to adapt the weights
for a given SNR. The GPD algorithm is used to accomplish
the discriminative adaptation of the exponent stream weights
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Figure 1. Comparing recognition performance at different

stream weight configurations. (GPD: use stream weights
obtained from GPD training; P.l.: use stream weights obtained
from parameter interpolation; Wt.=1: all weights are set to one;
No Delta: no dynamic features used.)

From Figure 1. We can see that incorporating dynamic features
improves the noise robustness of the recognition system.
Furthermore, using stream weights obtained from discriminative
training enhances the recognition performance considerably at
all SNR levels. To test the interpolation scheme, five SNR
settings which is not pre-trained, namely, 5 dB, 15 dB, 25 dB,

35 dB, and 45 dB, were tested using the stream weights 4.

predicted by interpolations. In order to measure the
effectiveness of the interpolation method, GPD-trained weights

are also evaluated at these SNR levels, as they should give an

upper limit of the performance we expect from the proposed
technique. Clearly, the parameter interpolation works very
well.  The recognition accuracy using the stream weights
predicted by interpolations is only slightly lower than using the

GPD-trained weights at the same SNR. The corresponding g.

recognition accuracy readings are summarized in Table 1.

during training.
weights for
satisfactory results.

Using linear interpolation to predict stream
untrained SNR in the testing stage yields
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