
ROBUST SPEECH RECOGNITION USING DISCRIMINATIVE STREAM
WEIGHTING AND PARAMETER INTERPOLATION

Stephen M. Chu and Yunxin Zhao

Beckman Institute and Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

ABSTRACT

This paper presents a method to improve the robustness of
speech recognition in noisy conditions. It has been shown
that using dynamic features in addition to static features can
improve the noise robustness of speech recognizers. In this
work we show that in a continuous-density Hidden Markov
Model (HMM) based speech recognition system, weighting the
contribution of the dynamic features according to SNR levels
can further improve the performance, and we propose a two-step
scheme to adapt the weights for a given Signal to Noise Ratio
(SNR). The first step is to obtain the optimal weights for a set
of selected SNR levels by discriminative training. The
Generalized Probabilistic Decent (GPD) framework is used in
our experiments. The second step is to interpolate the set of
SNR-specific weights obtained in step one for a new SNR
condition. Experimental results obtained by the proposed
technique is encouraging. Evaluation using speaker
independent digits with added white Gaussian noise shows
significant reduction in error rate at various SNR levels.

1. INTRODUCTION

HMM based speech recognizers perform well if trained and
tested under matched conditions. However, trying to train
models for all possible environments and SNR levels is
impractical. Therefore one way to solve this problem is to
compensate models trained on clean speech to give adapted
models that are more robust to noise. It is desired that the
compensation method be computational inexpensive so that the
models can be quickly adjusted to suit the noise conditions.

It is well known that using dynamic features in addition to static
features can improve the noise robustness of speech recognizers.
In this work we demonstrate that weighting the contribution of
the dynamic features according to SNR levels can further
improve the performance in multi-stream HMM speech
recognition systems.

In such a system, the static and dynamic features within each
HMM are modeled by two separate streams. For each stream
in each state of each model, an exponential weight is used to
control this particular stream's contribution to the output
probability. The objective is to adjust these stream weights so
that the recognition error is minimized. Recently many
researchers have shown that discriminative training methods,
especially the GPD algorithm, are effective in finding the stream
weights that minimize the recognition error [2]. However,
majority of the reported experiments are carried out using clean
speech. In our experiment, we apply the discriminative

training algorithm under noisy conditions to gain insight of the
relationship between the optimal stream weights and SNR.
Moreover, since each weight can be treated as a function of
SNR, we are able to obtain the weights for an unseen SNR by
interpolating the known points. During recognition, the SNR
of the noisy speech signal is first estimated. The stream
weights at that SNR are then calculated and updated. It is
worthy noting that the calculation of weights at the recognition
stage is very simple and straightforward.

This paper is organized as follows. In the next section we
introduce the multi-stream HMM and the exponent stream
weights. We start section 3 by reviewing the GPD formulation,
which is then followed by the derivation of the formulas used in
the discriminative training of the weights. The two-step
parameter interpolation scheme is discussed in section 4. We
present the experimental results in section 5 and conclude the
work in section 6.

2. STREAM WEIGHTING IN MULTI-
STREAM HMM

Let’s first consider a typical single-stream continuous-density
HMM. The output distribution b oi j t, () of model i, state j,
given the observation vector at time t, is represented by a
mixture of Gaussian densities. The formula for computing
b oi j t, () is

 b o c N oi j t i j m
m

M

t i j m i j m, , , , , , ,() (, ,)=
=

∑
1

µ Σ (1)

where M is the number of mixture components, ci j m, , is the
weight of the m’th component and N(x,µi,j,m,Σi,j,m) is a
multivariate Gaussian with mean vector µi,j,m and covariance
matrix Σi,j,m. The mixture weights ci,j,m in the above equation
are nonnegative and add up to one.

A single-stream HMM can be used to model both static and
dynamic features of speech if we concatenate the static and
dynamic features to form a single observation vector.

However, if we assume that the static features and the dynamic
features are statistically independent, then we can put them into
two separate streams. Let’s denote the static observation
vector at time t by o1,t and the dynamic observation vector by
o2,t, the formula for computing bi,j(ot) is then

 b o c N oi j t i j s m
m

M

s t i j s m i j s m
s

, , , , , , , , , , ,() (, ,)=










==
∑∏

11

2

µ Σ (2)

Putting static and dynamic features into separate streams allows
us to introduce exponent stream weights to control each
stream’s contribution to the final output probability, and thus
weighting the “importance” of each feature stream in the model.
The formula for computing the output probability using the
exponent stream weights is

 b o c N oi j t i j s m
m

M

s t i j s m i j s m
s

i j s

, , , , , , , , , , ,() (, ,)
, ,

=










==
∑∏

11

2

µ
γ

Σ (3)

where γi,j,s is the weight of stream s of state j in model i.
Notice that since the new bi,j(ot) does not satisfy stochastic
constrains in general, equation (3) is no longer a probability
mass function.

The exponent stream weights γi,j,s in equation (3) are model and
state specific, i.e. for each state in each model, there is a specific
set of stream weights. However, the weights can also be tied
at various levels. Two possible ways of tying are tying at the
global level and tying at the class level. In the first case, all
states from all models share the same set of stream weights,
and in the second case, all states in the same HMM have the
same stream weights.

The main focus of the current work is to improve the noise
robustness of automatic speech recognition by finding the
optimal stream weights at a given SNR level. In the training
stage, we use discriminative methods to adjust the weights to
achieve minimum recognition rate. We discuss the
discriminative training in the next section.

3. DISCRIMINATIVE TRAINING

3.1. Minimum Error Classification

Discriminative training for minimum classification error
attempts to minimize a function of recognition errors on a
closed data set. The most important aspect of minimum error
classification is the definition of a suitable objective function,
the minimization of which is directly related to the minimization
of the empirical error rate. The objective function should be a
smooth differentiable function of the HMM parameters (the
exponent stream weights in our case), with an easily computable
first order derivative, so that the gradient descent algorithms can
be used to minimize the recognition error.

The objective function is derived by the three-step procedure
prescribed in the GPD formulation [1].

3.2. GPD Formulation

The first step of the formulation is to define an appropriate
discriminant function gi (;)x Λ which is used to implement the
following decision rule

 C Ci()x = if g gi
j

j(;) max (;)x xΛ Λ= (4)

where C(x) denotes the recognition decisions on x, Ci denotes
class i, and Λ denotes the HMM parameter set including the
stream weights. The discriminative function gi (;)x Λ is
defined as

 () (){ }g Pi ix x; ln , |

/

Λ Θ Λ
Θ

=






















∑ ξ

ξ

all i

1

 (5)

where Θ i is any allowable state sequence for the i’th HMM
class, i.e.

 Θ i i i t= { , , }, ,θ θ1 � � (6)

When ξ = 1 , equation (5) becomes the standard HMM log
likelihood probability, which is usually computed using the
forward-backward algorithm. When ξ = ∞ , equation (5)
reduces to the log likelihood of the Viterbi best path. Let’s
now redefine Θ as the Viterbi state sequence for the
corresponding HMM,

 Θ = { , , , , }θ θ θ1 2 � �t (7)

then gi (;)x Λ is simplified to

 () () ()()g a b oi i i i t
t

T

t

T

t t t

xx

(;) ln ln ln, , , ,x Λ = + +
−

==
∑∑π θ θ θ θ1 1

11

 (8)

where ot is the feature vector of observation x at time t, π θi , 1
 is

the initial probability of state θ1 in the i’th HMM, ai t t, ,θ θ−1
 is the

state transition probability from state θt −1 to θt in the i’th
HMM, b oi tt, ()θ is the output probability of state θt for ot , and
Tx is the total number of feature vectors in the observation x.

The second step of GPD formulation is to introduce a
misclassification measure in order to embed the decision
process in a function form. The misclassification measure for
class i is defined by

 () () ()[]d g
M

gi i j
j j i

x x x; ; ln exp ;
,

/

Λ Λ Λ= − +
−











≠
∑1

1

1

η
η

 (9)

where η is a positive number. di (;)x Λ calculates the
penalty incurred when classifying the current observation x as
the i’th class.

The third step is to define a smooth loss function li (;)x Λ for
each class based on the misclassification measure. We choose
the sigmoid function in our implementation. Therefore

 []()l
d

i

i

(;)
exp (;)

x
x

Λ
Λ

=
+ − −

1

1 α β
 (10)

The constant α and β control the slope and mid-point of the
sigmoid. Both α and β are positive real numbers and are
determined experimentally.

3.3. Adaptive Learning

If x is a labeled training sample of class i, then the loss incurred
when this sample is presented is l i(x;Λ). This is the objective
function used in our experiments. The parameter set Λ is
adjusted recursively when each training sample is presented.
Let xn be the n’th training sample and Λn+1 be the parameter set
after xn is applied. Then Λn+1 can be calculated by the
following rule

 Λ Λ ∆Λn n n+ = +1 (11)

where

 ∆Λ Λn n nn l= − ∇ε() (;)U x (12)

In equation (12), U is a positive definite matrix, ∇ is the
gradient operator, and ε()n is a monotonic decreasing function
of n that gives a small positive learning rate. In this
experiment we use

 ε()n
a

b nc
=

+
 (13)

where a, b, and c are experimentally determined positive
constants. Assuming U to be the identity matrix, the
adjusting formula (11) for the exponent weights of equation (3)
becomes

 γ γ ε ∂
∂γi j s

n
i j s
n i n n

i j s
n n

in
l

C C, , , ,
, ,

()
(;)

, ()+ = − =1 x
x

Λ
 if (14)

One can also use the empirical loss as the objective function,
which is calculated by summing up l i(x;Λ) over all training
samples of all classes. In this case, the parameters are updated
after all samples in the training set is presented.

3.4. Differentiate the Loss Function

To realize the adaptive learning algorithm described in the
previous section, it is necessary to calculate the derivatives of
the loss function with respect to the exponent stream weights.
The computation of the derivatives is accomplished by applying
the chain rule, i.e.,

()∂

∂γ
∂

∂γ
l l d

d

di

i j s

i i

i

i

i j s

(;) d (;)

d (;)

(;)

, , , ,

x x

x
xΛ Λ

Λ
Λ= ⋅ (15)

The first term in the right hand side of equation (15) can be
evaluated as

() ()

()()
d (;)

d (;)

(;)

exp (;)

l d

d

l d

d

i i

i

i i

i

x

x

x

x

Λ
Λ

Λ

Λ
=

−

α

α β

2

 (16)

Assuming the exponent stream weights to be model and state
specific, and upon differentiating the second term, we get

 ()

∂
∂γ

∂
∂γ

δ θ
∂

∂γ

d g

j
b o

i

i j s

i

i j s

t

i j t

i j st

Tx

(;) (;)

()
ln ()

, , , ,

,

, ,

x xΛ Λ
= −

= − − ⋅
=
∑

1

 (17)

Using equation (3), we can obtain

() ()∂
∂γ

µ
ln ()

ln , ,
,

, ,
, , , , , , , , , ,

b o
c N o

i j t

i j s
i j s m s t i j s m i j s m

m

M

=










=
∑ Σ

1

 (18)

Now, given a labeled training sample x, we can readily use
equation (14) to update the corresponding stream weights.

 4. PARAMETER INTERPOLATION

The parameter interpolation procedure involves two steps for a
given type of noise corruption.

In the first step, we obtain the optimal stream weights at a set of
known SNR levels. These SNR settings should cover a wide
range of noise levels so that interpolation in the following step
is feasible. We start with a set of multi-stream HMMs that are
trained using clean speech. At each SNR setting, the stream
weights in these HMMs are adjusted to achieve minimum
recognition error by the discriminative training algorithm
discussed in the previous section using noisy speech with
corresponding SNR. This step is done in the training stage.

The second step is carried out in the recognition stage when a
test utterance with an unseen SNR is presented. The goal of
the interpolation is to calculate the stream weights that can
reduce the recognition error without having to go through the
training stage for all SNRs. Let m be the total number of the
stream weights. Then the interpolation process for a new SNR
can be viewed as finding the trajectory along the existing SNR s
for the m-dimensional stream weights. A simpler alternative is
to assume the weights are independent to each other. And
treat each of them as a separate function of SNR. Thus the
interpolation becomes m independent 1-D interpolations.
Linear interpolation using the exponent weights of the two
neighboring SNR conditions is used in this experiment for its
simplicity.

5. EXPERIMENTS

5.1. Experimental Paradigm

The experiments were conducted using the speaker independent
isolated digit TI database. The data was pre-processed using a
25 ms Hamming window and has a 10 ms frame shift. For
each frame, a set of 15 MFCC coefficients with an analysis
order of 24 were computed. The delta coefficients were also
calculated. For each digit, a HMM with 8 emitting states and
Gaussian density for each state was trained by EM method
using clean speech data. Diagonal covariance matrices were
used in the HMMs.

The discriminative training programs were built using the HTK
library functions. The stream weights for six SNR levels of
0dB, 10dB, 20dB, 30dB, 40dB, and 50dB were discriminatively
adjusted to minimize recognition error at the given SNR. The
stream weights had been initialized to be γi,j,s≡1 for all i, j, s
prior to the discriminative training. The noisy speech samples
were synthesized by adding white Gaussian noise to the clean
speech.

To evaluate the proposed parameter interpolation scheme, 5 test
data sets with unseen SNR levels were evaluated using the
stream weights obtained from interpolation. The results are
shown and discussed next.

5.2. Results

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

SNR (dB)

W
or

d
A

cc
ur

ac
y

(%
)

GPD

P.I.

Wt.=1

No Delta

Figure 1. Comparing recognition performance at different
stream weight configurations. (GPD: use stream weights
obtained from GPD training; P.I.: use stream weights obtained
from parameter interpolation; Wt.=1: all weights are set to one;
No Delta: no dynamic features used.)

From Figure 1. We can see that incorporating dynamic features
improves the noise robustness of the recognition system.
Furthermore, using stream weights obtained from discriminative
training enhances the recognition performance considerably at
all SNR levels. To test the interpolation scheme, five SNR
settings which is not pre-trained, namely, 5 dB, 15 dB, 25 dB,
35 dB, and 45 dB, were tested using the stream weights
predicted by interpolations. In order to measure the
effectiveness of the interpolation method, GPD-trained weights
are also evaluated at these SNR levels, as they should give an
upper limit of the performance we expect from the proposed
technique. Clearly, the parameter interpolation works very
well. The recognition accuracy using the stream weights
predicted by interpolations is only slightly lower than using the
GPD-trained weights at the same SNR. The corresponding
recognition accuracy readings are summarized in Table 1.

SNR (dB) No Delta Wt.=1 GPD. P.I..

5 18.4 21.9 41.3 39.4

15 31.4 49.8 60.6 59.1

25 42.9 72.4 81.6 80.6

35 64.8 89.8 91.8 91.4

45 83.5 95.6 96.8 95.9

Table 1. Summary of recognition accuracy (%)

6. CONCLUSIONS

We considered the problem of HMM stream weighting in the
context of robust noisy speech recognition. We proposed a
two-step parameter interpolation scheme to adapt the weights
for a given SNR. The GPD algorithm is used to accomplish
the discriminative adaptation of the exponent stream weights
during training. Using linear interpolation to predict stream
weights for untrained SNR in the testing stage yields
satisfactory results.

7. ACKNOWLEDGMENTS

We acknowledge the support from the Army Research
Laboratory. Thanks must also be given to Prof. Thomas
Huang for his stimulating discussions.

8. REFERENCES.

1. Juang, B.-H., and Katagiri, S. “Discriminative Learning
for Minimum Error Classification,” IEEE Trans. On
Signal Processing, Vol. 40: 3043-3054, 1992.

2. Hernando, J., Ayarte J., and Monte E. “Optimization of
Speech Parameter Weighting for CDHMM Word
Recognition,” Proc. Eurospeech95, Madrid, Vol. 1:
105-108, 1995.

3. Hernando, J., “Maximum Likelihood Weighting of
Dynamic Speech Features for CDHMM Speech
Recognition,” Proc. ICCASP97, Munich, Vol. 2: 1267-
1270, 1997

4. Rainton, D., and Sagayama, S., “Minimum Error
Classification Training of HMMs-Implementation
Details and Experimental Results,” J. Acoust. Soc. Jpn.,
Vol. 13: 379-387, 1992.

5. Chou, W., Juang, B.-H., and Lee, C.H., “Segmental
GPD Training of HMM Based Speech Recognizer,”
Proc. ICCASP92, San Francisco, Vol. 1: 473-476, 1992.

6. Rabinar, L., and Juang, B.-H., Fundamentals of Speech
Recognition, Prentice Hall, Englewood Cliffs, 1993.

