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ABSTRACT

Prediction of symbolic prosodic labels (pitch accents
and phrase structure) is an important step in generating
natural synthetic speech. This paper investigates a new
automatically trainable procedure for combined accent and
phrase prediction based on transformational rule-based
learning. Experimental results on a radio news corpus
show that accent prediction bene�ts from phrase structure,
but not vice versa, and that TRBL outperforms simple de-
cision tree predictors.

1. INTRODUCTION

Although most speech synthesis systems are typically
judged to be intelligible in simple listening tests, the ability
to understand synthetic speech degrades quickly in noisy
or high cognitive load situations [1]. Furthermore, the out-
put compares poorly with human speech in terms of nat-
uralness, which directly impacts widespread acceptance of
synthesis in spoken dialog systems. Many researchers have
proposed that prosody is an important area in which in-
telligibility and naturalness of synthesized speech can be
improved, e.g. [2]. Prosody is often predicted in two stages:
�rst symbolic labels are assigned, and then continuous fea-
tures such as duration and fundamental frequency are pre-
dicted. The aspect of prosody that this work will focus on
is prediction of symbolic accent and phrase boundary la-
bels.

Although some successful systems use handwritten
rules, there is a growing interest in automatically trainable
approaches since they can be easily ported to new speak-
ing styles and task domains. To date, the most successful
automatic algorithms for predicting symbolic prosodic la-
bels are based on decision trees and/or Markov models
[3, 4, 5, 6, 7]. These approaches have the disadvantage of
being sensitive to training data limitations, a problem be-
cause of the high cost of prosodic labeling. This work
will present a new approach based on transformational
rule-based learning (TRBL) that is more robust in sparse
training conditions. The TRBL algorithm produces an or-
dered sequence of rules that transforms unlabeled data to
labeled data. The algorithm was introduced by Brill [8]
for the part-of-speech tagging task. In our case, the labels
indicate pitch accent and phrase boundary locations.

In the next section, we present an overview of the de-

cision tree and TRBL prediction algorithms, which will
then be compared experimentally. For the synthesis appli-
cation, both methods can be thought of as automatic rule
learning procedures, but with di�erent advantages.

2. AUTOMATIC RULE LEARNING

2.1. Decision Trees

A decision tree is an ordered sequence of questions about
elements of a feature vector that lead to classi�cation of
that vector. Questions may be of the form \is xi > T ?" or
\is xi 2 A?". Based on the answer to the questions, which
can be thought of as \if-then" rules, one traverses a tree
until reaching a terminal node which has the class label
assignment. The order of the questions and the param-
eters (e.g. T , A) are trained automatically from data by
using a greedy algorithm that associates subsets of training
data with each node in the tree and successively partitions
the data into �ner and �ner subsets with the questions
that most improve an overall objective function [9]. For
classi�cation, where the ultimate goal is typically mini-
mum error, the objective function is minimum \impurity"
of the class probability distributions associated with ter-
minal nodes. Impurity may simply be classi�cation error
rate, but other indirect measures tend to be more robust
and minimum entropy is used here. The size of the tree
can be determined by a simple stopping criterion or by
using more sophisticated techniques that look at indepen-
dent data (e.g. cross validation). An inherent problem in
decision tree training is that the amount of data available
at nodes lower in the tree is diminished with each new split.
A related problem is that data at one node in the tree is
not available to other nodes in question design, which is
appropriate for questions based on dependent features but
not ideal if there are independent features.

2.2. TRBL

Transformational rule-based learning is a machine learn-
ing algorithm which �nds an ordered sequence of rules that
iteratively minimize the overall classi�cation error. The re-
sulting rule sequence can then be applied to labeling new
data. Each rule is chosen by a greedy search over the
entire corpus. The search for new rules stops when the
decrease in misclassi�cation accuracy reaches a minimum
threshold. Brill �rst introduced this method to the natural



language processing community [8] for the part-of-speech
tagging task. In that task, TRBL performed on par with
the contemporary stochastic methods often with much less
data (64k words vs. 1M). TRBL has also been shown to
have equivalent or greater success than other algorithms
in such diverse language processing tasks as prepositional
phrase attachment [10] and word segmentation [11].

TRBL has three basic requirements to de�ne the sys-
tem [8]: an initial-state annotator, a set of prototype rules,
and a function for ranking potential rules. Sensitivity to
the initial state has been reported in some though not
all applications, so we investigated several starting points.
The prototypes or \templates" provided to the learning al-
gorithm are analogous to the set of allowable questions in
decision tree training, except that in TRBL the questions
are associated with an explicit rule change rather than the
implicit label assignment in decision trees. The set allow-
able templates should be of reasonable size and complex-
ity to limit computational costs, but also broad enough
to capture important dependencies in the data. Finally,
the ranking function is a score computed for each possible
instantiation of a rule by calculating the improvement in
classi�er performance. In the applications explored here,
performance is measured in terms of classi�cation error
for accent assignment and an absolute distance for phrase
prediction, as discussed further in section 3.

Given the three components described above, the learn-
ing process proceeds as follows:

1. Label the data according to some base rules to create
an initial state.

2. For all possible rule prototypes, all possible features,
and observed1 feature values:

(a) Instantiate a rule from a prototype.

(b) Apply the rule to the data.

(c) Compare the predicted labels with the \truth"
and record the performance gain (i.e. score).

3. Find the rule that maximizes the gain in accuracy (or
reduction in distance).

4. Test if the new rule exceeds a threshold of minimal
gain. If not, stop. Otherwise, change the candidate
labels of the data according to this rule, and go to
step (2).

The rule sets are similar to handwritten rules. The ma-
jor di�erence is that while the prototypes are designed by
hand, the values for the features and the order of rule ap-
plication are automatically learned.

2.3. Similarities and Trade-o�s

Decision tree design and TRBL are quite similar in that
they are both automatic methods of learning rules for la-
beling data and both are designed with greedy algorithms.
Both have the advantages of automatic training from data,

1
To reduce the cost of the search, values for template features

are chosen from the values that occur in the error space.

which allows the algorithm to capture relationships that
might be missed by a human expert and to learn the rela-
tive importance of rules that may vary with speaking style.
However, there are important di�erences between decision
trees and TRBL. As mentioned above, TRBL rules involve
successively changing the labeling of a data sequence, i.e.
placing intermediate labels on the data that provide a sort
of hidden state in rule learning. TRBL can easily and
inexpensively incorporate rules about other label assign-
ments for data in a sequence. In contrast, decision trees
are aimed at classifying independent vectors, though ques-
tions about local context can be incorporated by making
Markov assumptions and using dynamic programming to
�nd the most likely sequence [6]. TRBL allows for more
data to be examined in the design of each rule, since the
entire space of data sharing feature values is examined for
a question. Compare this approach to decision trees where
questions use only the data subset of the associated node.
For this reason, TRBL tends to be less sensitive to data
sparsity, and is better able to learn parameters associated
with independent factors. One disadvantage of TRBL is
that, by not associating probabilities with the label assign-
ments, it is not as well suited for recognition applications.

3. EXPERIMENTS

3.1. Paradigm

Experiments are based on the Boston University Ra-
dio News corpus [12], training and testing with a single
speaker (F2B). Recorded broadcast news stories were used
as the training data (9181 words). Four di�erent news sto-
ries read in the laboratory constitute the test data (2113
words). All the speech was hand transcribed. The corpus
was labeled with part-of-speech tags using an HMM-based
tagger [13]. Part-of-speech labeling errors were corrected
for the test data, but not the training data.

Data were prosodically labeled using the ToBI
system[14], which includes pitch accent tones, breaks, and
phrase boundary tones. For this study, only presence vs.
absence of pitch accents are used, and phrase boundary
markers are collapsed into three categories: major, mi-
nor, and no boundary. A consistency study of human la-
belers transcribing this corpus found that there was 91%
agreement among labelers for presence vs. absence of pitch
accents [6]. Inter-annotator agreement was 93% for the lo-
cation of phrase boundaries and 91% agreement for the
location of phrase accents. To some extent, the inter-
annotator agreement provides and upper bound on per-
formance of the prediction algorithms. In the test data,
48% of the words and 31% of the syllables receive pitch
accents, which provides a lower bound for achievable error
rates. Of the test words, 20% are followed by major bound-
aries, 8% by minor boundaries, and 72% are not followed
by a boundary.

Phrase and accent location are evaluated in compari-
son to a target version, which is the hand-labeled prosodic
transcription of test sentences read by the target speaker
in the news broadcasting style. Pitch accent prediction ac-
curacy is the number of correctly predicted labels over the



total possible. Results are reported at the syllable level,
since prediction is at that level to capture the phenomenon
of early accent placement [15]. Phrase boundary predic-
tion is evaluated in terms of average absolute distance from
the target boundary:

Dphr =
1

N
�N
i=1j�i � �̂ij; (1)

where phrase boundaries are speci�ed as �i 2 f0 =
none; 1 = minor; 2 = majorg, �̂i corresponds to a pre-
dicted label, and N is the total number of boundaries.
This metric penalizes errors of assigning no boundary for a
major boundary (and vice versa) more than minor bound-
ary assignment errors. The motivation for a distance is
the observation that phenomena like duration lengthening
and pause duration have a graded behavior [16] that is bet-
ter re
ected in a distance measure, and the �nding that
two labelers are much more likely to disagree on whether
a phrase is major vs. minor than on whether there is a
major boundary vs. none at all. Boundary accuracy rates
are also reported (number of correct predictions over the
total number of words), but with the caveat that TRBL
performance is an under-estimate since the boundary pre-
diction algorithm here was designed with distance rather
than accuracy as a criterion.

3.2. Pitch Accent Location Prediction

The �rst experiment was the prediction of pitch accent
locations with phrase boundaries known. Features used
for prediction include lexical stress, vowel quality, part-of-
speech labels, and hand-labeled phrase boundaries. Re-
sults for decision tree prediction and TRBL are presented
in table 1. In order to provide a baseline, accuracy using
a simple rule that assigns an accent to the syllable with
primary lexical stress in every content word is shown. The
constrained TRBL experiment uses rule templates that
were equivalent to the types of questions that could be
asked in the decision tree, with the exception that the de-
cision tree includes questions about groups of categorical
features and the TRBL templates considers only one or two
values. For this constrained case, where TRBL is at some-
what of a disadvantage, we �nd that TRBL gives slightly
better performance than the decision tree. Surprisingly,
the di�erence is not signi�cantly a�ected by reducing the
training data (up to 2/3 reduction). The best case TRBL
includes a two-feature combination (\and") rule template
and performance improves. In both cases of TRBL, several
di�erent initialization rules were tried, with only insigni�-
cant di�erences in performance. Results reported here are
based on initializing all syllables with a pitch accent, in
which case the �rst rules learned e�ectively lead to the
simple content-word system.

3.3. Phrase Boundary Prediction

Phrase boundary prediction experiments with known ac-
cent location were conducted next using part-of-speech,
punctuation, and hand-labeled pitch accent location on
words as features. Table 2 summarizes the results in terms
of absolute accuracy and average phrase break distance.

Table 1: Summary of pitch accent prediction experiments
with phrase boundaries given. Accuracy is reported at the
syllable level.

Algorithm Accuracy

Content Word Rule 83.8%
Decision Tree 85.6%
Constrained TRBL 86.0%
Best case TRBL 86.8%

Table 2: Summary of phrase boundary prediction with
accuracy rates and average absolute distance at the word
level.

Algorithm Distance Accuracy

All no boundary 0.478 71.9%
Punctuation 0.266 76.9%
Decision Tree 0.253 84.1%
Constrained TRBL 0.239 82.3%
TRBL 0.235 82.6%

Again, the constrained TRBL case includes only rule tem-
plates that are equivalent to decision tree questions. The
best case TRBL includes two-feature questions and allows
questions about neighboring phrase boundary labels. The
constrained algorithm does not produce signi�cantly worse
results than the best case. As for accent prediction, initial-
ization does not have a signi�cant impact on performance,
and results reported here are based on initializing with no
phrase breaks. Table 3 gives the label confusions for the
best case TRBL system.

For phrase boundary prediction case, it is di�cult to
compare the decision tree and TRBL results, since the
two systems are designed under di�erent criteria.2 TRBL
is designed according to the distance criterion and as ex-
pected achieves better performance under that criterion
and worse performance under the accuracy measure. Simi-
larly, the decision tree is not designed to minimize distance;
minimum entropy is better suited to the exact match (ac-
curacy) criterion. A consequence of the di�erence in de-
sign criteria is that the decision tree, unlike the TRBL
rules, never predicts minor boundaries because they are
relatively infrequent.

2
The objective function is not a fundamental di�erence be-

tween the models, since both could be used with either criterion.

Table 3: Confusion table for best case TRBL rules for
phrase prediction at the word level.

Truth
Predicted Major Minor None
Major 274 43 37
Minor 50 55 65
None 92 80 1416

Total 416 178 1518



Table 4: Pitch accent prediction accuracy using di�erent
boundary location input and accent prediction training.

Boundaries Accent Rules Accuracy

Hand-labeled Original 86.8%
Predicted Original 86.3%
Predicted Retrained 86.7%

3.4. Combined Prediction

In the accent prediction experiments, where known
boundaries are a possible prediction variable, the TRBL
algorithm does in fact choose rules based on phrase bound-
ary location. However, the converse is not true: accent
location is not used in phrase boundary prediction. This
suggests that a fully automatic system should �rst predict
phrase boundaries and then accents. In this con�guration,
accuracy of boundary prediction is not a�ected, but accent
prediction will be based on less reliable boundary features.

To assess the impact of phrase prediction, the best case
rules were used with the predicted boundaries instead of
the hand-labeled boundaries. Then, the pitch accent rules
were retrained with the predicted boundary information,
by running the boundary prediction rules on the training
corpus. Table 4 shows the accuracy for the pitch accent
prediction. Using the predicted rather than known bound-
aries degrades performance, as one might expect, but most
of the loss is regained by retraining.

4. DISCUSSION

In summary, we have introduced a new approach to sym-
bolic prosodic label prediction based on transformational
rule-based learning. Experiments on phrase and accent
prediction with a radio news corpus show that TRBL gives
a small improvement over simple decision tree predictors,
despite a more simpli�ed approach to set membership rule
design. In addition, the experiments showed that accent
prediction bene�ts from phrase structure, but not vice
versa. The use of average absolute distance is proposed
as a new metric for design and evaluation of phrase pre-
diction, which is motivated by the graded acoustic cues
observed for di�erent phrase boundaries. The metric can
be modi�ed to re
ect changes in our understanding of dif-
ferent levels of phrase boundaries.

A surprising result was that performance di�erences be-
tween TRBL and decision trees did not seem to be sen-
sitive to the amount of training data. This may be due
to the nature of the corpus, since radio news is highly ac-
cented, and experiments on other data types are underway.
Another question is why TRBL did not choose questions
about neighboring prosodic labels, which is shown to be
useful in decision tree work [5, 6]. We conjecture that this
is a consequence of using left-to-right processing in label
transformation, and that further improvements in perfor-
mance can be obtained by evaluating di�erent strategies.
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