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ABSTRACT

In this paper, we describe a large-scale investigation of de-
pendency grammar language models. Our work includes
several signi�cant departures from earlier studies, notably
a larger training corpus, improved model structure, dif-
ferent feature types, new feature selection methods, and
more coherent training and test data. We report word er-
ror rate (wer) results of a speech recognition experiment,
in which we used these models to rescore the output of
the IBM speech recognition system.

1. INTRODUCTION

One promising idea for advancing statistical language
modeling is based upon dependency grammars, as re-
ported in [4]. This work has the appeal of integrating,
via the maximum entropy / minimum divergence (memd)
technique, information from both syntax and ngrams.
Moreover, unlike methods based upon context free gram-
mars, grammatical information enters through the words
themselves, rather than via abstract constituents like
parse-tree node labels. A preliminary investigation of this
idea, just cited, has yielded some positive results.
In this paper we report on further investigations of de-

pendency grammar language models. Our work was in-
spired by the earlier study, but includes several signi�cant
departures, notably a larger training corpus, improved
model structure, di�erent feature types, new feature selec-
tion methods, and more coherent training and test data.
We have conducted a preliminary study of the e�ect of us-
ing such models, in a rescoring paradigm, upon the word
error rate (wer) of the IBM speech recognition system.
We regret to report that we observed no signi�cant per-
formance improvement.
The rest of this paper is organized as follows. Section 2.

is a brief review of memd models in general, and the ele-
ments of dependency grammar models in particular. Sec-
tion 3. describes and motivates the types of features we
chose to investigate. In Section 4. we discuss the actual
selection of features. In Section 5. we describe our ex-
perimental setup, and in Section 6. we report the results
of the tests we performed. Section 7. is a summary and
description of future work.

2. MODEL STRUCTURE

Let S = w0 : : : wN be a sentence, comprised of words
w0 : : : wN , and let K(S) or just K stand for its linkage.
A linkage is a planar graph, in which the nodes are the
words of S, and the edges connect linguistically related
word pairs. An example of a typical sentence S, with its
linkage K, appears in Figure 1.
Our model, written P (S j K), is not a language model

proper, since it is conditioned upon the linkage. In prin-
ciple we can recover P (S) as

P
K
P (S j K)P (K); in prac-

tice we simply take P (S) � P (S j K). Moreover since K
itself depends upon S, the model cannot be applied in-
crementally, as in a real-time speech recognition system.
However such a model can be used to select from a list of
complete sentences.

Please order one dozen cream pies .<s> </s>banana

0 1 2 3 4 5 6 7 8 9

Figure 1: A Sentence S and its Linkage K. The

shaded area represents the history h7, which is the

conditioning information available to the model at

position 7. h
7 consists of the complete linkage K,

and words w0 through w6 inclusive.

Our model P (S j K) is a minimum divergence model,
as described in references [10, 1]. Its value formed in the
usual way as the product of individual word probabilities;
that is

P (S j K) =

NY
i=0

p(wi j wi�10 K): (1)

We write hi = hwi�1
0

;Ki for the history at position i; this
is the information the model may use when predicting
word wi. For the models in this paper, the history consists
of the words w0 : : : wi�1, plus the complete linkage K.
The individual word probabilities are determined as

p(wi j hi) =
1

Z(��;hi)
q(wi j hi) e���

�f(w
i
;h
i
) (2)

where
Z(��;h) =

X
w2V

q(w j h) e���
�f(w;h)

: (3)

Here �f(w;h) is a vector of 0s and 1s, which depends
upon the value of each feature at the point w;h. Likewise
�� is a vector of real-valued exponents, which are adjusted
during the training of the model. V is a �xed vocabulary
of words, and Z(��;h) is a normalizing value, computed
according to equation (3). Finally q(w j h) is the base
model, which gives our nominal prediction of w from h.
In the work reported here, the base model q is decidedly

not a constant. This is what makes ours a minimum di-
vergence model, rather than a maximum entropy model.
This approach, while not novel [1, 10], is one of the �rst
key departures of our work from [4].
We chose to use a standard deleted-interpolation tri-

gram language model for q. This gives us access to the
information present in q, but spares us from having to in-
corporate as features the 14,395,589 trigrams, 3,741,147
bigrams and 52,802 unigrams used to determine q. While
in principle this could be done, the vast training computa-
tion would be infeasible for us. Moreover, using a linearly
interpolated trigram as a base model allows us to circum-
vent a host of problems associated with discounting the
empirical expectations of ngram features.

3. LINGUISTIC FEATURES

We now take up the question of how to exploit the infor-
mation in the history hi to more accurately estimate the
probability of word wi. We remind the reader that the



base model already provides such an estimate, q(wi j hi).
But because in this case q is a trigram model, it discards
all of hi except the two most recent words, wi�2wi�1.
Our aim is to �nd informative binary feature functions
f(wi; hi) that are clues to especially likely or unlikely val-
ues of wi. We chose to use two di�erent kinds of features:
triggers and links.

3.1. Trigger Features

As every speaker of English is aware, the appearance of
one given word in a sentence is often strong evidence that
another particular word will follow. For instance, know-
ing that computer appeared among the words of hi, one
might expect that nerds is more likely than normal to ap-
pear among the remaining words of the sentence. Word
pairs such as these, where the appearance of the �rst is
strongly correlated with the subsequent appearance of the
second, are called trigger pairs [11]. Note that the trigger
property is not necessarily symmetric: we would expect a
left parenthesis ( to trigger a right parenthesis ), but not
the other way around.
Our model incorporates these relationships through

trigger features. Let u; v be some trigger pair. A trig-
ger feature fuv is de�ned as

fuv(w;h) =
n

1 if w = v and h3 u with juvj � dmin

0 otherwise
(4)

Here h 3 u, read \h contains u," means that u appears
somewhere in the word sequence of h. The notation
juvj � dmin means that the span of this pair, de�ned
as the number of words from u to v, including u and v
themselves, is not less than a predetermined threshold
dmin. Throughout this work we have used dmin = 3.

3.2. Link Features

One shortcoming of trigger features is their pro
igacy.
In a model built with the feature fcomputer nerds, an ap-
pearance of computer will boost the probability of nerds
at every position at distance dmin or more to its right.
This will be so whether or not a position is a linguis-
tically appropriate site for nerds. Moreover, if a model
contains a large number of trigger features, there will be
many triggered words at each position, and their height-
ened probabilities will tend to wash each other out.
For instance, consider the sentence of Figure 2. The

plausible trigger feature fstocks rose will boost the prob-
ability of rose at every word from position 4 onward, in
particular at position 6, even though it is syntactically in-
appropriate there. Moreover, the acoustically confusable
word woes appears at this position, and so increasing the
probability of rose here could yield an error. Thus the
boost that fstocks rose gives to rose, which we desire in
position 8, is just as clearly not desired in position 6. Un-
fortunately the trigger is blind to the distinction between
these two sites, and it boosts rose in both places.

Nasdaq stocks , despite Asian woes , rose

0 1 2 3 4 5 6 7

<s> </s>

8 9

sharply .

10 11

Figure 2: Links versus Triggers. The trigger feature

for stocks and rose boosts the probability of rose at

each position from 4 to 11, inclusive. The link feature

also boosts rose, but only at positions 4 and 8. Shown

here is the actual linkage computed by our parser.

These considerations have led us and others to consider
features that use the linkage. The aim is to focus the e�ect
of words in the history upon the particular positions that
are appropriate for them to in
uence. Figure 2 shows how

the linkage of this sentence connects stocks, the headword
of the subject noun phrase, with rose, the main verb of
the sentence; note there is no such link from stocks to
woes. These is precisely the kind of linguistic fact that
we wish to exploit, using an appropriate feature function.
To do so, we will construct a feature function that (like
a trigger) turns on only for a given word pair, and in
addition only when the named words are connected by an
arc of the linkage.
Because such features depend upon the the linkage of

the sentence, we refer to them as link features. Such a
feature f _

u v
, for words u and v, is de�ned as

f _
u v

(w;h) =

�
1 if w = v and h3

_

u v with juvj � dmin

0 otherwise

(5)

The notation h3
_

u v, read \h contains u, linking v," means
that word u appears in the history's word sequence, that
an arc ofK connects u with the current position, and that
word v appears in the current position.

4. FEATURE SELECTION

Once the base model and feature types have been
chosen|choices generally dictated by computational
practicality, and the information available in the training
corpus|the key open issue is which features to incorpo-
rate in the model. In general we cannot and will not want
to use every possible feature. For one thing, we usually
have too many features to train a model that includes
all of them: the processing and memory requirements are
just too great. Moreover, rescoring with a model that has
a very large number of features is itself time-consuming.
Finally, many features may be of little predictive value, for
they may just repeat information that is already present
in the base model.
In this section we describe our method for selecting

model features. Our method proceeds in three phases:
candidate identi�cation, ranking, and selection.
Candidate Identi�cation By candidate identi�ca-

tion we mean a pass over the training corpus (or some
other corpus) to collect potential features for the model.
The result of this pass is a candidate feature set F .
One or more criteria may be applied to decide which

features, out of the many exhibited in the corpus, are
placed into F in the �rst place. In the work reported
here, we scanned the parsed corpus to collect potential
features, both triggers and links. Since we were building
a model using a trigram base model, we had good reason
to believe that linguistic relations between adjacent words
were well-modeled by this base, and so we ignored links
or triggers of span 2. Also, to keep from being swamped
with features of no semantic importance, and which arise
purely because the words involved are common ones, we
likewise ignored triggers where either word was among
the 20 most frequent in the corpus. For similar reasons
we did not include any trigger pair with a count below 6,
nor any link pair with a count below 4. In this way we
collected a total of 538,998 candidate link features (which
were all those passing the criteria above) and 1,000,000
candidate trigger features (which were those passing the
criteria above, and then the top million when sorted by
mutual information). We supplied the resulting set F ,
containing 1,538,998 features, to the next stage of the
feature selection process.
Ranking In the next phase, ranking, we determine the

gain of each feature, and sort the features in order of de-
creasing gain. The gain of a feature f is a well-known [5]
and well-studied [2, 3] �gure of merit that arises naturally
in the theory of memd models; it is de�ned as follows. Let
C denote a corpus of N words, and let P (C) denote the
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Figure 3: Corpus Preparation, Feature Selection, Model Training, Decoding and Rescoring. See Section 5 for a

discussion.

corpus probability according to the base model. Now con-
struct an memd model from the base model, constrained
by the single feature f ; let Pf(C) denote the corpus prob-
ability, according to this single-feature model. Then the
gain of f , written Gf , is de�ned as

Gf =
1

N
log

Pf (C)

P (C)
=

1

N
log Pf(C)�

1

N
log P (C): (6)

This quantity may be understood as follows. P (C) and
Pf (C) respectively measure how well the base and single-
feature models accord with the training corpus. Numer-
ically, we wish that Pf(C) > P (C), for this means that
overall, the model Pf(C) assigns more probability mass
to words as they actually appear in the corpus than does
P (C). Thus the more useful feature f is in predicting the
corpus, the higher the value Pf(C) will attain.
Formally, the gain measures the improvement in cross-

entropy a�orded by f , or more simply, the information
content of f . Reference [3] contains an extensive discus-
sion of the gain as a criterion for ranking features, and
reference [9] describes a fast algorithm for computing the
gain of a large number of features.
Selection Ranking places the features of F in order,

from most to least gainful. It also provides an initial es-
timate of each feature's exponent. However, though it is
clear that we wish to choose features from F in rank or-
der, say retaining the top 10,000 or 100,000 features, the
ranking algorithm does not indicate how many features
to select. This is the �nal step in determining the model
features, which we call selection. It consists of choosing
where in the ranked feature list to draw the line, and must
be decided by hand by the modeler.

5. EXPERIMENTAL SETUP

The overall structure of our experiment appears in Fig-
ure 3 above. The �gure's top section shows the develop-

ment of the parser and the two standard trigram language
models we require. The parser, a modi�ed version of the
decision-tree parser of David Magerman [8], was trained
on 990,145 words of Treebank Release II data [6]. The two
trigram models were trained on 41,855,429 words of Wall
Street Journal text [7]. The �rst one is trained on words
as they appear in ordinary running text; its vocabulary
contains 56,700 words. This is called the decoding model.
The second one is trained on text that has been modi-
�ed to create suitable input to the parser, for instance by
detaching and exhibiting grammatical particles, like pos-
sessives and contracted negations (thus, Bill's!Bill 's,
and couldn't!could n't). This serves as the base of our
memd model; its vocabulary contains 52,817 words (it is
smaller because it does not include possessives, which are
a surprisingly large fraction of the �rst vocabulary).
The second section shows the �rst two steps of feature

selection, which are candidate identi�cation and ranking.
The third section shows the �nal selection of features, and
the training of the memd model. The word exps here is
an abbreviation for exponents, which are the quantities
adjusted in memd training. Finally, the bottom section
shows the complete decoding and rescoring procedure.

6. TESTS AND RESULTS

6.1. Test Data

For acoustic test data we used 16 KHz-sampled record-
ings of male speakers, made in a quiet environment
with a Sennheiser microphone. Speakers read verbalized-
punctuation Wall Street Journal text [7]; the text of the
test data did not overlap with the training data. We note
this important di�erence between test and training data
text: the training data appeared to consist of complete
paragraphs of arbitrary length, and sometimes complete
articles, drawn from the Wall Street Journal. Though
the test data consisted of sentences drawn from the same



publication at contemporaneous dates, no one speaker's
selection contained more than four contiguous sentences
from the same article. Since our trigger features were
gathered from complete paragraphs or articles, and then
ranked and trained on the same text, neither the selec-
tion, ranking nor training will accord well with the test
data.

6.2. Model Training

We trained and tested eleven models, drawing features
from the set F of 1,538,998 candidates described in Sec-
tion 4. above. Our aims were to compare the bene�t of
di�erent feature types (though see the caveat above re-
garding triggers), to investigate the e�ect of adding fea-
tures, and of course ultimately to drive down the error
rate. In all cases we trained on the complete corpus.
We performed memd training using the improved iterative
scaling algorithm of [5]. Additional information about
our training method may be found in [3].

6.3. Model Tests and Performance

The acoustic test data were subdivided into two sets,
heldout and �nal test, comprising 2553 and 11186 words
of reference text respectively. Using the unmodi�ed
IBM speech decoder, we generated 100 hypotheses for
each test utterance. For each memd model we studied,
we determined the optimal value of � for rescoring the
heldout data, using the geometrically weighted mixture
� log P (A j S) + � logP (S j K), with � held �xed at 1.
Here P (A j S) is the acoustic probability, and P (S j K) is
the dependency grammar language model probability, for
utterance A and hypothesis S. We then rescored the �nal
test data using the � determined on the heldout data.

model heldout data �nal test
word errors word errors
(#) (%) (#) (%)

decoded 220 8.6 1161 10.4

baseline 206 8.1 1031 9.2

10k 206 8.1 1060 9.5
10k.2trig 205 8.0 1027 9.2
10k.2link 199 7.8 1070 9.6

50k 202 7.9 1052 9.4
50k.2trig 204 8.0 1020 9.1
50k.2link 197 7.7 1015 9.1

100k 200 7.8 1055 9.4
100k.2link 196 7.7 1042 9.3
150k.2link 199 7.8 1037 9.3
200k.2link 200 7.8 1034 9.2
500k.2link 202 7.9 1037 9.3

Table 1: Model Performance.

Results appear in Table 1. For each model, we report
performance on both the heldout data and the �nal test
data. Model decoded lists the error rate for the top-ranked
hypothesis produced by the unmodi�ed IBM speech de-
coder. However, this is not a fair basis for comparison.
The fair comparison is made with model baseline, which is
the result of reranking the topn decodings using the base
model, after tuning its mixture weight �. For both held-
out and �nal data, this yielded modest reductions in the
error rate. These improvements are not attributable to
dependency grammar modeling, because baseline is just
a standard trigram model.
The remaining lines in the table list results for memd

dependency grammar models. The notation 50k indi-
cates that the model contained the top 50,000 features,
as ranked by gain. The notations 2trig and 2link indicate
the model contained only trigger or link features respec-
tively; absence of either indicates the model contained a
mix of both feature types.

Our initial experiments, on heldout data, showed small
but promising improvements, on the order of 5% relative
wer reduction. However, the true measure of a model
is its performance on �nal test data. Here our results
may be described as mixed, at best. Only three models
(10k.2trig, 50k.2trig, 50k.2link) showed any improvement
at all, and these gains were on the order of 1:5% relative
wer reduction.

7. SUMMARY

In this paper, we studied the construction and use of
memd dependency grammar models in automatic speech
recognition. Our work was inspired by [4], but di�ers in
the use of a trigram base model, the inclusion of both
trigger and link features, use of larger and more coher-
ent training and testing corpora, feature selection by the
gain statistic, rescoring of more accurate hypotheses, and
performance comparison on �nal test data. In their cur-
rent form, our models a�orded no signi�cant performance
improvement. A detailed error analysis, which we have
not yet conducted, is required to decide if these models
warrant further investigation.
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