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ABSTRACT

For the representation of acoustic characteristics of three-
dimensional vocal-tract shapes, it is necessary to consider
the effects of higher-order modes. This paper proposes an
acoustic model of the vocal-tract which incorporates the
coupling of the higher-order modes, including both prop-
agative and evanescent modes. A cascaded structure of
acoustic tubes connected asymmetrically is introduced as
a physical approximation of the vocal-tract. The acous-
tic characteristics, which are dependent not only on the
vocal-tract area function but also on the vocal-tract config-
uration, can be investigated by the proposed model. Pre-
liminary results of numerical computations for relatively
simple configurations suggest that additional resonances
at frequencies above 4.3kHz are formed by the propaga-
tive higher-order modes, while those at frequencies below
3 kHz are influenced by the evanescent higher-order modes.
These results are also confirmed by the FEM simulations.

1. INTRODUCTION

Visualizations of the acoustic field in vocal-tracts obtained
by acoustic measurements[1] and FEM simulations [2] indi-
cate that the assumption of plane wave propagation in the
vocal-tracts is not sufficient for the representation of acous-
tic characteristics of three-dimensional vocal-tract shapes
even at relatively lower frequencies around 3 kHz.

In this paper, a parametric acoustic model of the speech
production system with the propagation and radiation of
higher-order modes is proposed. A coupling of higher-
order modes, including evanescent modes, is expressed us-
ing a mode decomposition technique. A cascaded structure
of acoustic tubes connected asymmetrically is introduced
as an approximation of the geometry of the vocal-tract. In
order to facilitate the mode decomposition of the acoustic
field in the model, each tube is assumed to have a rectangu-
lar cross-sectional shape with an aspect ratio appropriate
for the corresponding part of the vocal-tract.

The proposed model consists of three parts; sound source,
vocal-tract, and radiation parts, which can be considered
as an extension of the well-known one-dimensional model
since the proposed model is exactly reduced to the one-
dimensional model when no higher-order modes are taken
into account. For each of these parts, electrical equiva-
lent circuits are presented. Ome higher-order mode can
be regarded as one transmission line with a character-
istic impedance and a propagation constant correspond-

ing to those of that higher-order mode. Thus, multi-wire
lines connected with ideal transformers are introduced as
the equivalent circuits. The radiation boundary is also
represented by ideal transformers terminated by radia-
tion impedances that can be defined for each higher-order
mode.

For the evaluation of acoustic characteristics of the pro-
posed model, the transfer function between a source vol-
ume velocity and the sound-pressure at a distant posi-
tion is derived from the viewpoint of the effective radi-
ation power. Since the transfer function is expressed in
terms of parameters of higher-order modes, influences of
each higher-order mode can be examined frequency by fre-
quency.

The preliminary results obtained by using relatively sim-
ple tube geometries show that many resonances due to
the propagative higher-order modes appear in the higher
frequencies. Zeros also appear in the higher frequencies.
Moreover, an interesting fact is that resonance frequencies
below the cut-off frequency of the first higher-order mode
are lowered by the existence of the evanescent higher-order
modes. This result implies that the asymmetrical geom-
etry of the connected tubes can be regarded as a certain
extension of length for waves to travel. These results are
also confirmed by Finite Element Method simulations.

For real vocal-tracts, such asymmetrical geometry may be
formed especially in the region anterior to the tongue tip.
The acoustic characteristics, which are dependent not only
on the vocal-tract area function but also on the vocal-tract
configuration, can be investigated by the proposed model.

2. 3-D PARAMETRIC MODEL

2.1 Higher-order modes in a tube

The 3-D acoustic field in a uniform rectangular tube can
be represented in the infinite series of higher-order modes.
A sound-pressure p(z,y,z), z being the direction of the
tube axis, and z direction particle velocity v.(z,y, z) are

expressed as follows [3].

p(x,y,2) = Z(aNe_VNZ—l—bNeVNZ)(;SN(x,y)
~ g_TO{D(—z)a + D(2)b}
v(z,y,2)x ¢ ngl{D(—z)a— D(z)b}



where N stands for the number of the higher-order mode,
YN, dn(z,y) are the propagation constant and normal func-
tion. In the above matrix notation, the infinite series are
truncated to a certain value Nz, and a,b , ¢ , Z¢c and

D(z) are defined as,

a= [ao, A1y aNmaa:]T ’ b= [bo, bla o abNmaa:]T
¢ = [¢0(CB, y)a ¢1(CB, y)a ) ¢Nmaz(x’ y)]T

Zc = jkpe(diagyo, 71, YN pmael)”

D(z) = diag[e™*, e %, ... e Nmaz?]

where k, p and ¢ are wave number, air density and sound
speed, respectively. For the representation of propagation,
scattering and radiation of higher-order modes, root power
waves are used, which are defined as,

Wq, = (2Zc)_1/2a s Wi = (ZZC)_1/2b.

2.2 YVocal-tract

When two tubes are connected asymmetrically, the cou-
pling of the higher-order modes can be expressed in terms
of a scattering matrix S,, which represents the relationship
between the incident waves (W,,, Wp,) and the reflected
waves (Wp,, Wa, ), and is the function of the geometry of
the junction [4],

/—’L
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The suffix denotes the tube number. N; and N, are the
total number of modes that should be considered in tube
1 and 2. For the better representation of the acoustic field
near the junction, the ratio of Ny and N5 should be chosen
in accord with that of the sectional size of the two tubes
[4, 5, 6]. In that case, S%',S.? are not square matrices.
Let us assume that S,, is properly obtained by using the
proper values of N1 and N». Then, it can be justifiably
assumed that the modes of very high order are localized in
the vicinity of the junction, and have almost no influence
on the transmission of the acoustic power in the tube with
a length of L.. Thus, if we extract the upper left parts
of 811,821 812 and S22, with a size of Ny x Np, where
N7 < min(Np, N2), the incident and reflected waves can
be expressed in terms of a transfer scattering matrix T.,
which is a suitable form to represent a cascaded structure
of several tubes.
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The electrical equivalent circuits and signal flow of the
junction are shown in figure 1. Multi transmission lines
corresponding to each higher-order mode are connected by
an ideal transformer. Let the length of the tube 1 be L.,
and rewrite the forward and backward wave components
on the end of the sound source side of the tube as w,, and
wp,. Then the forward and backward wave components
on the end of the sound source side of each tube can be
expressed in the following transfer scattering matrix T(wl).
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Figure 1: Equivalent circuit and signal flow for junction.
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Figure 2: Model configuration.

Thus, if the vocal-tract is approximated as a cascaded
structure of N, sections of rectangular tubes as shown in
figure 2, the forward and backward wave components at
the sound source region (w,, and ng) and those at the
radiation region (w,, and wp,) can be represented as fol-
lows.

N
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2.3 Sound source

Assume that the particle velocity distribution vg(z,y) is
given on the surface Q4 of the sound source region of
the first tube. The mode decomposition representation
of vy(z,y) is

vg(z,y) = ¢ fZEi{al — b1}

If we define a vector vy as,

= ,y)dS
then we get, Va /‘/ﬂg ¢ 129(2,9)

_ 1/2
where, Wag = (Zea/2) Tve + Wog

Wag = (2ch)_1/2a1 s ng = (2ZC1)_1/2b1~

An electrical equivalent circuit and signal flow for a source
with higher-order modes are shown in figure 3.
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Figure 4: Equivalent circuit and signal flow for radia-
tion.

2.4 Radiation

Radiation is a very important factor for determining the
resonance characteristics of the vocal-tract. Based on acous-
tic measurements, we have already reported that the radi-
ation powers originating from the propagative higher-order
modes can be greater than those of plane waves [7]. Here,
we assume that the last section of the vocal-tract is open
on an infinite plane baffle. The scattering matrix that
gives the relationship between the forward and backward
wave components at the radiation region is given by,

SZ;T = Zlc/]is (Zrad + ZCNS )_1(Zrad - ZCNs )Zgll\f/j

where, Z,qq 1s a radiation impedance matrix derived by
Muehlelsen ] and is defined as,
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¢ (z,y) is a vector of normal functions of the last section,
and the integrand is integrated over the open end region.
Zrqq represents modal radiation impedance. The first di-
agonal element of Z; 44 is the ordinary radiation impedance
(per unit area) that is widely used in traditional speech
production models. Since Zyrqq 18 a symmetric matrix,
Zqq can be decomposed as,

Zrad = Rrad + jXrad
= TIR,Tr+iTLX.Tx
(TERTr=1, TYTx =1)

where R4 and X, are diagonal matrices composed of eigen
values of Ryqq and X,.q, and Tr and Tx are matri-
ces composed of eigen vectors of R,.q and X,,4. Thus,
from classical circuit theory, an electrical equivalent cir-
cuit for radiation with higher-order modes can be realized
as shown in figure 4.

2.5 Transfer function

Define a vocal-tract transfer function as,

H = Klpsar/ug]

where 4y and psqr are a volume velocity of a sound source
and a sound pressure at a distant position from the open
end, respectively. K is a frequency-independent constant
that is needed for H to be dimensionless. The effective ra-
diation power W, __ , can be obtained by integrating active
acoustic intensities over the open end.

ffRe{ﬁ(x,y)vz(x,y)/Z}dxdy
Re{w} (I+87)"(ZE, )"/*x
Zo 21— 8w, )

W,

Prad —

At a distant position, sound waves are assumed to be plane
waves. Then |ps.-|* should be proportional to W, _,.
Thus, using another frequency-independent constant K,

we can write ,
prarl = Ku/Wp, 04

ug is easily obtained by integrating v4(z, y) over Q4. Thus
we can compute H from the above 2 equations.

3. PRELIMINARY RESULTS

The transfer functions for relatively simple configurations,
as shown in figure 5, are computed from the proposed
model. The driving source region is located at the cen-
ter of the first section with a size of 0.5cm width x 1.48cm
height. The distribution of vy(z,y) is uniform over this
source region.

Tube size:
Ly, =Lz, =4.0cm, Ly, =5.66 cm

Ly, =L,,=148cm, L,, =2.09 cm
L.,=L.,=L., =55cm
Condition:

Plane waves only
With higher-order modes
With higher-order modes

A Symmetry: Figure 5(a)
B Symmetry: Figure 5(a)
C Asymmetry: Figure 5(b)

Figure 6 shows the transfer characteristics of each condi-
tion. The cut-off frequencies of the first and last section are
indicated by vertical lines at 4.33 and 8.66kHz, and those
of the second section are indicated by arrows. It is seen
that some additional resonances in the higher frequencies
above 4.3kHz are formed by the propagative higher-order
modes. There are three resonances in the lower frequencies
below 3 kHz. These frequencies are listed in Table 1. The
valuesin parentheses are the rate of change relative to con-
dition A. It is clearly seen that the resonance frequencies
are lowered by the existence of the evanescent higher-order
modes. This result implies that the asymmetrical geom-
etry of the connected tubes can be regarded as a certain
extension of length for waves to travel.

(a) (b

Figure 5: Tube configurations.
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Figure 6: Transfer functions (3 sections).
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Figure 7: Transfer functions (comparison with FEM).
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Figure 8: Sound-pressure distributions.

Table 1: Peak frequencies [Hz].

f1 f2 fa
A 455 1536 2467
B || 452 (0.7) | 1516 (-1.3) | 2443 (-1.0)
C |[ 449 (-1.3) | 1484 (-3.4) | 2366 (-4.1)

Figure 7 shows the simulation results of figure 5(b) by
FEM with an additional hemispherical radiation space at-
tached to the open end [2]. The characteristics obtained
by the proposed model are also drawn as a solid line. And

figure 8 presents the sound pressure distributions at 7 kHz
obtained by the proposed method and FEM simulation,
and shows very good agreement. At other frequencies, the
sound pressure distributions obtained by the two differ-
ent methods show good agreement as well. From these
figures, we can confirm that the proposed model validly
represents the acoustic characteristics of three-dimensional
vocal-tract configuration.

4. CONCLUSION

The proposed model is an extension of the traditional
one-dimensional model of speech production, and is valid
to represent the steady-state frequency characteristics of
three-dimensional configuration. A direct simulation in
the time domain, however, is not available since delay-free
loops due to the evanescent modes appear in the model.
For the improvement of the proposed model, mode decom-
position of bent and branch tubes should be investigated
as a future project.
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