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ABSTRACT

We propose a new approach to Temporal Decompo-
sition (TD) of characteristic parameters of speech for
very low rate coding applications. The method models
the articulatory dynamics employing a hierarchical er-
ror minimization algorithm which does not use Singu-
lar Value Decomposition. It is also much faster than
conventional TD and could be implemented in real-
time. High flexibility is achieved with the proposed
method to comply with the desired coding require-
ments, such as compression ratio, accuracy, delay, and
computational complexity. This method can be used
for coding spectral parameters at rates 1000-1200 b/s
with high fidelity and an algorithmic delay of less than
150 msec.

1. INTRODUCTION

Efficiency in coding of speech spectral representation is
achieved basically in two directions denoted by inter-
frame and intra-frame dependences. The intra-frame
dependence makes Vector Quantization (VQ) schemes
more efficient than scalar quantization techniques due
to the non-random nature of speech spectral parame-
ters [1]. The inter-frame dependence between spectral
parameters, obtained from successive frames, results
directly from the phonetic structure of speech [2].
Typically, the frame period is much smaller than
the effective length of most phonetic events. This
means that we need to process sufficient number of
frames to employ inter-frame dependence for an ef-
ficient statistical analysis. Temporal Decomposition
(TD) is a powerful method to achieve such an analy-
sis [3,4]. TD resolves the overlapping structure of the
speech events and represents the spectral information
by a smaller set of parameters and a set of interpola-
tion functions for a given block of speech. This gives a
compression ratio in the range of 4.5-7 for coding the
spectral parameters [5]. However, TD is computation-
ally complex and imposes a long algorithmic delay (.5
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to 1 second) on the coding process as well. Hence it is
used mostly in non-real-time applications [2].

In this paper, we propose a novel method, Hierar-
chical TD (HTD), which significantly simplifies con-
ventional TD, based on the idea of event approxima-
tion in TD-based coding we developed earlier [5,6].
The organization of the paper is as follows: section
2 describes the theory of conventional TD and its ad-
vantages in speech coding. In section 3, the proposed
method is developed. Experimental results are illus-
trated in section 4 and a discussion on performance of
the method is given in section 5.

2. TEMPORAL DECOMPOSITION

Temporal Decomposition attributes the speech spec-
tral parameters to the speech events through linear
modeling of coarticulation [3]:

Y =A% (1)

where Y is the matrix of spectral parameters, ® is
the matrix of event functions, and A is the matrix of
weightings.

In equation (1), only the Y is known. To find ®
and A matrices, we need to decompose Y through
orthogonalization [3]. Such a procedure is basically
performed in two stages. First, the locations of event
functions are detected using Singular Value Decompo-
sition (SVD). Second, the event functions are refined
using an iterative method, to minimize the distance
(or error) between the estimated and the original pa-
rameter sets.

The refinement procedure is carried by minimizing

the Mean Square Error, E, defined as [3]:

m

E= Z[%(n) - Z aikdr(n)]® (2)

From equation (2), event functions are extracted after
elimination of their minor lobes with an insignificant



degradation in the performance [3].

We have shown earlier that events can be approx-
imated using fixed shape/width functions, with a mi-
nor degradation in reconstructed speech quality (see
[5] and [6]). This method, referred to as Modified
TD (MTD), locates an FEvent Approzimating Func-
tion (EAF) at the centroid of each event. This leads
to a considerable reduction in the rate for coding the
spectral information. In addition, it eliminates the
computationally expensive event refinement task from
TD. This idea forms the basis for the HTD method
described in the next section.

3. THE PROPOSED METHOD:
HIERARCHICAL TD (HTD)

Hierarchical TD (HTD) relies on the idea of MTD. It
uses a specific EAF as a priori information about event
functions. The decomposition problem is then reduced
to the problem of searching for the best locations to lo-
cate EAF over the given speech block, in the sense of
minimum Mean Square Error (MSE) between the ap-
proximated and the original parameter sets. The EAF
is thus located at the centroids of the event functions,
in the order of effectiveness in the approximation er-
ror reduction. Accordingly, HTD optimizes the event
locating task.

Given a set of spectral parameters represented by
a p X N matrix, Y, we rewrite the basic expression for
TD, as:

Y =A¥ (3)

where ¥ is an m X N matrix of EAFsand Aisapxm
matrix of target vectors as weightings [6].

Event locations over the whole speech block are
found by searching within shorter segments. The length
of the segments is computed based on the event rate,
and total width of the EAF employed. Consequently,
matrix Y is first partitioned into a number of overlap-
ping matrices of equal size. This is a windowing pro-
cess applied to Y with an overlap equal to the width
of an EAF. The total number of segments in the block
is given as:

e @
L, — L,

where Ly is the length of Y (block length), L. is the
length of event, L,, is the window length, and all length
parameters are described in terms of number of frames.
The symbol [] represents the nearest integer greater
than the expression inside the symbol.

Given Y! as the parameters matrix of the /th seg-
ment in the block, we need to search for the event lo-
cations in the segment to find the corresponding target
vectors. We limit, here, the problem to one event per

N, =T

segment. This is expressed as:

Y =aly! (5)

where ' is a row vector as the event function, a’ is

a column vector as target vector, and Y'is a p X Ly,
matrix of approximated parameters.

We begin the search by locating EAF at the first
position in the segment and find corresponding target
vector from equation (6) reversed. This is described
as:

alt = ¥ (i) ©)

where 9" is the event vector when EAF located at
n = k and a'* is the corresponding target vector. k
can vary in the range of (Le+1)/2 to Ly, — (Le+1)/2
where L. is chosen to be an odd number.

Vector (¢"*)~1 is obtained from:

e e U e O

where T is for transposition. For the simple case when

(7)

only one event is considered in the segment, the right
bracket is simply a scalar, but for other cases, the
square matrix [1™* (¢*)T] should be inverted. It can
be shown, however, that this matrix is always non-
singular.

The procedure is repeated for all values for &k al-
lowed in the segment and, then, the Fuclidean distance
between approximated and original parameter sets in
the segment is computed as:

Le—1

1
s

k= Les 1

el = d(YL Y (vi=¥)" (yi=¥;) (8)

where y; and §; are column vectors in matrices Y!
and Yl, respectively (superscript { dropped).

All segments in the given block are treated simi-
larly to obtain indices of event locations from distance
minimization within the segments. This information
is then used for constructing the matrix of EAFs for
the whole block. It is to be noted that target vectors
extracted from segments are not used anymore. In-
stead, we need to find the matrix of weightings, A, for
the whole block through reversing equation (3), as:

A=Y¥! (9)
where ! = T [@®T]"1 and [¥P7T] is a square
non-singular matrix.

We shown briefly that the proposed method cap-
tures correlated parametersin Y, in fact in segments of
Y, using the EAF as the basis function. From equation
(8), the total approximation error within each segment
can be expressed as:
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Figure 1. Event rate versus parametric distance for dif-
ferent values for the block length: 100, 150, and 200
msec, from top to bottom.
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where (k) is the approximation error, y;(j) is the
(4,7)th element in the segmented Y, ¥*(5) is the jth
element of vector ¥, a* (¢) is the ith element of vector
a*, and superscript k represents the frame index at
which EAF is located. We need to find a* such that
(k) is minimized with a given value for k.

By making the partial derivatives of (k) with re-
spect to a® (i) equal to zero, we get:

em(k) = o’ — 32 Z u? (1, k) (11)

where o = 35, 57 [ui ()], 82 = [Z;[0" ()] and
u(i, k) =3, yi(r)*(r).

Both a and § in equation (11) are constants for a
given subset of parameters. Hence, the error is mini-
mized when u(i, k), representing cross-correlation be-
tween the EAF and the part of Y! selected, reaches
its maximum value. This happens when the peak of
the EAF coincides nearly with the most-steady points
in the selected subset of the spectral parameters, over
i dimension (i = 1,....p).

4. EXPERIMENTS

We conducted a number of experiments, using different
speech samples from the TIMIT database.

Figure 1 illustrates the effects of the system param-
eters on the event rate and the parametric distance for
different block lengths (Lp). The points shown on the
figures are obtained from averaging the results pro-
cessing a large number of speech samples.

To measure the distance between the original and
the approximated parameter sets, we used Euclidean
metric in the LAR space which resembles Log Likeli-

hood Ratio (LLR) [1]:

Ly Ly L. Event | Parametric
Rate Distance

20 20 13 27 .078
STD=1 | STD=2

30 22 14 24 072
STD=2 | STD=2

40 25 17 23 .071
STD=3 | STD=2

Table 1. Best overall values for system parameters,
corresponding STDs over speech samples, and resulting
parametric distances. Length parameters are in terms of
the number of frames.

Figure 2. Time trajectories of the first four LAR
parameters for Ly = 30. Solid: original, dashed: approx-
imated.

d, = [Z [parii(n) — pars;(n)[2]1/2 (12)

where n is the frame index, p is the number of pa-
rameters for each frame, and pari(n) and para(n) are
the original and the approximated LAR parameters
for frame n, respectively. Acceptable values for the
system parameters and their corresponding Standard
Dewiation (STD) over speech samples are shown in ta-
ble 1. Note that the dispersion of points in the figures
is due to the changes in the system parameters because
of rounding errors. A sample of spectral parameters
trajectories approximated by the method, obtained at
rate 1.2 kb/s, is displayed in figure 2.

In all experiments, Log Area Ratio (LAR) parame-
ters were used for HT'D analysis based on our previous
findings [7]. The frame length and frame period were
40 and 5 msec, respectively, where Hanning windowing
was used.

5. DISCUSSION

Results presented in table 1 and figure 2 show that
HTD is able to conform with the large variability found
in the LAR trajectories. This is achieved given two
major features of the method. First, the method is
not sensitive to the frame rate. Hence, as long as the
computational complexity is acceptable, the temporal
resolution of the system can be improved. In prac-
tice, a resolution of 5 msec could give excellent per-
formance, while 10 msec resolution could still yield
adequate accuracy. Second, the method, unlike most
other interpolation methods [8], models co-articulation
which occurs at different levels of the articulation. At
event rates
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Figure 3. Normalized implementation time on log scale
in terms of number of events located within each seg-
ment, where total number of events for the whole block
is taken fixed. Dotted line shows implementation time
for TD.

higher than true phoneme rate, the proposed method
characterizes co-articulation between consecutive sub-
phonemes through adaptation with statistical charac-
teristics of spectral parameters by adjusting the event
locations over the speech block. Increasing the number
of EAFs within each block could improve performance
of the method at the expense of increasing the coding
rate.

Table 1 also shows that HTD, unlike TD, does not
need long blocks of speech to process the signal. This
arises from the flexibility of HTD which is achieved
by adjusting the method parameters, Ly, L., and L,,,
based on the requirements in the coding system. Hence-
forth, the algorithmic delay can be reduced to about
100 msec, with very low distortion, as indicated in the
table. This makes HTD usable in many voice commu-
nication and storage applications.

The elimination of two time consuming tasks, SVD
and event refinement, from TD is another significant
advantage of HTD over couventional TD. Figure 3
shows the implementation time of HTD, in terms of
the number of events per segment, with respect to
that of TD. For the simplest case considered in sec-
tion 3, when only one event per segment is to be lo-
cated, HTD is more than ten times faster than TD.
This makes it plausible for real-time implementation
using most PCs.

At lower event rates, when the length of EAF is
comparable to the length of phonemes, HTD simu-
lates TD. The optimal performance is achieved using
an event refinement algorithm, as that in conventional
TD. In this case, HTD again outperforms TD in al-
most all conditions from both viewpoints of accuracy
and computational complexity. Figure 4 shows the
distance between the original and the approximated
spectral parameters, using both TD and HTD, after
performing event refinement. The drawback of TD
stems from its distant sidelobes which are likely missed
in sidelobe removal at each iteration in the refinement
process [3]. This prevents TD to reach an optimal
state in the sense of minimum distance between orig-
inal and approximated parameters. HTD is free from
this shortcoming, as it uses monotonic, smooth func-
tions at the initial state [6].
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Figure 4. Parametric distance (distance between origi-
nal and approximated parameters) in TD and HTD versus
number of iterations in event refinement through mean
square error minimization. TD: dashed, HTD: dashed-
dotted.

6. CONCLUSION

We have proposed, in this paper, a new method for
temporal decomposition of speech spectral parame-
ters using a hierarchical error minimization algorithm,
applied directly to the matrix of parameters, for the
purpose of speech compression. The method reduces
significantly the computational load compared to that
with conventional TD. It also gives high flexibility in
adaptation with the coding system specifications, such
as delay and accuracy. This makes the method appli-
cable in many speech coding applications such as voice
communication and voice storage.
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