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ABSTRACT

We propose a new approach to Temporal Decompo-

sition (TD) of characteristic parameters of speech for
very low rate coding applications. The method models

the articulatory dynamics employing a hierarchical er-
ror minimization algorithm which does not use Singu-
lar Value Decomposition. It is also much faster than

conventional TD and could be implemented in real-
time. High 
exibility is achieved with the proposed

method to comply with the desired coding require-
ments, such as compression ratio, accuracy, delay, and
computational complexity. This method can be used

for coding spectral parameters at rates 1000-1200 b/s
with high �delity and an algorithmic delay of less than

150 msec.

1. INTRODUCTION

E�ciency in coding of speech spectral representation is

achieved basically in two directions denoted by inter-

frame and intra-frame dependences. The intra-frame
dependence makes Vector Quantization (VQ) schemes

more e�cient than scalar quantization techniques due
to the non-random nature of speech spectral parame-

ters [1]. The inter-frame dependence between spectral
parameters, obtained from successive frames, results
directly from the phonetic structure of speech [2].

Typically, the frame period is much smaller than
the e�ective length of most phonetic events. This

means that we need to process su�cient number of
frames to employ inter-frame dependence for an ef-

�cient statistical analysis. Temporal Decomposition

(TD) is a powerful method to achieve such an analy-
sis [3,4]. TD resolves the overlapping structure of the

speech events and represents the spectral information
by a smaller set of parameters and a set of interpola-

tion functions for a given block of speech. This gives a
compression ratio in the range of 4.5-7 for coding the
spectral parameters [5]. However, TD is computation-

ally complex and imposes a long algorithmic delay (.5

to 1 second) on the coding process as well. Hence it is

used mostly in non-real-time applications [2].
In this paper, we propose a novel method, Hierar-

chical TD (HTD), which signi�cantly simpli�es con-

ventional TD, based on the idea of event approxima-
tion in TD-based coding we developed earlier [5,6].

The organization of the paper is as follows: section
2 describes the theory of conventional TD and its ad-
vantages in speech coding. In section 3, the proposed

method is developed. Experimental results are illus-
trated in section 4 and a discussion on performance of

the method is given in section 5.

2. TEMPORAL DECOMPOSITION

Temporal Decomposition attributes the speech spec-

tral parameters to the speech events through linear
modeling of coarticulation [3]:

Y = A� (1)

where Y is the matrix of spectral parameters, � is
the matrix of event functions, and A is the matrix of
weightings.

In equation (1), only the Y is known. To �nd �
and A matrices, we need to decompose Y through

orthogonalization [3]. Such a procedure is basically
performed in two stages. First, the locations of event
functions are detected using Singular Value Decompo-

sition (SVD). Second, the event functions are re�ned
using an iterative method, to minimize the distance

(or error) between the estimated and the original pa-
rameter sets.

The re�nement procedure is carried by minimizing
the Mean Square Error, E, de�ned as [3]:

E =
X

n

[yi(n)�
mX

k=1

aik�k(n)]
2 (2)

From equation (2), event functions are extracted after
elimination of their minor lobes with an insigni�cant



degradation in the performance [3].

We have shown earlier that events can be approx-
imated using �xed shape/width functions, with a mi-

nor degradation in reconstructed speech quality (see
[5] and [6]). This method, referred to as Modi�ed

TD (MTD), locates an Event Approximating Func-

tion (EAF) at the centroid of each event. This leads

to a considerable reduction in the rate for coding the
spectral information. In addition, it eliminates the
computationally expensive event re�nement task from

TD. This idea forms the basis for the HTD method
described in the next section.

3. THE PROPOSED METHOD:

HIERARCHICAL TD (HTD)

Hierarchical TD (HTD) relies on the idea of MTD. It

uses a speci�c EAF as a priori information about event
functions. The decomposition problem is then reduced
to the problem of searching for the best locations to lo-

cate EAF over the given speech block, in the sense of
minimum Mean Square Error (MSE) between the ap-

proximated and the original parameter sets. The EAF
is thus located at the centroids of the event functions,
in the order of e�ectiveness in the approximation er-

ror reduction. Accordingly, HTD optimizes the event
locating task.

Given a set of spectral parameters represented by
a p�N matrix, Y, we rewrite the basic expression for

TD, as:
Y = A	 (3)

where	 is an m�N matrix of EAFs andA is a p�m
matrix of target vectors as weightings [6].

Event locations over the whole speech block are

found by searching within shorter segments. The length
of the segments is computed based on the event rate,

and total width of the EAF employed. Consequently,
matrix Y is �rst partitioned into a number of overlap-
ping matrices of equal size. This is a windowing pro-

cess applied to Y with an overlap equal to the width
of an EAF. The total number of segments in the block

is given as:

Ns = d
Lb � Le

Lw � Le
e (4)

where Lb is the length of Y (block length), Le is the
length of event, Lw is the window length, and all length

parameters are described in terms of number of frames.
The symbol de represents the nearest integer greater
than the expression inside the symbol.

Given Yl as the parameters matrix of the lth seg-
ment in the block, we need to search for the event lo-

cations in the segment to �nd the corresponding target
vectors. We limit, here, the problem to one event per

segment. This is expressed as:

Ŷl = al l (5)

where  l is a row vector as the event function, al is
a column vector as target vector, and Ŷl is a p � Lw
matrix of approximated parameters.

We begin the search by locating EAF at the �rst
position in the segment and �nd corresponding target

vector from equation (6) reversed. This is described
as:

alk = Ŷl ( lk)�1 (6)

where  lk is the event vector when EAF located at

n = k and alk is the corresponding target vector. k
can vary in the range of (Le+1)=2 to Lw� (Le+1)=2

where Le is chosen to be an odd number.
Vector ( lk)�1 is obtained from:

( lk)�1 = ( lk)T [ lk( lk)T ]�1 (7)

where T is for transposition. For the simple case when

only one event is considered in the segment, the right
bracket is simply a scalar, but for other cases, the

square matrix [ lk( lk)T ] should be inverted. It can
be shown, however, that this matrix is always non-

singular.
The procedure is repeated for all values for k al-

lowed in the segment and, then, the Euclidean distance

between approximated and original parameter sets in
the segment is computed as:

"l = d(Yl; Ŷl) =
1

Le

k+Le�1

2X

j=k�Le�1

2

(yj�ŷj)
T (yj�ŷj) (8)

where yj and ŷj are column vectors in matrices Yl

and Ŷl, respectively (superscript l dropped).
All segments in the given block are treated simi-

larly to obtain indices of event locations from distance

minimization within the segments. This information
is then used for constructing the matrix of EAFs for

the whole block. It is to be noted that target vectors
extracted from segments are not used anymore. In-
stead, we need to �nd the matrix of weightings, A, for

the whole block through reversing equation (3), as:

A = Y	�1 (9)

where 	�1 = 	T [		T ]�1, and [		T ] is a square

non-singular matrix.
We shown brie
y that the proposed method cap-

tures correlated parameters inY, in fact in segments of
Y, using the EAF as the basis function. From equation
(8), the total approximation error within each segment

can be expressed as:
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Figure 1. Event rate versus parametric distance for dif-

ferent values for the block length: 100, 150, and 200
msec, from top to bottom.

"(k) =

pX

i=1

L
wX

j=1

[yi(j)� ak(i) k(j)]2 (10)

where "(k) is the approximation error, yi(j) is the

(i; j)th element in the segmented Y,  k(j) is the jth
element of vector  k, ak(i) is the ith element of vector

ak, and superscript k represents the frame index at
which EAF is located. We need to �nd ak such that

"(k) is minimized with a given value for k.
By making the partial derivatives of "(k) with re-

spect to ak(i) equal to zero, we get:

"m(k) = �2 � �2
X

i

u2(i; k) (11)

where �2 =
P

i

P
j [yi(j)]

2, �2 = [
P

j [ 
k(j)]2]�1 and

u(i; k) =
P

r yi(r) 
k(r).

Both � and � in equation (11) are constants for a
given subset of parameters. Hence, the error is mini-

mized when u(i; k), representing cross-correlation be-
tween the EAF and the part of Ŷl selected, reaches

its maximum value. This happens when the peak of
the EAF coincides nearly with the most-steady points

in the selected subset of the spectral parameters, over
i dimension (i = 1; :::; p).

4. EXPERIMENTS

We conducted a number of experiments, using di�erent

speech samples from the TIMIT database.
Figure 1 illustrates the e�ects of the system param-

eters on the event rate and the parametric distance for
di�erent block lengths (Lb). The points shown on the
�gures are obtained from averaging the results pro-

cessing a large number of speech samples.
To measure the distance between the original and

the approximated parameter sets, we used Euclidean

metric in the LAR space which resembles Log Likeli-

hood Ratio (LLR) [1]:

L
b

Lw Le Event Parametric

Rate Distance

20 20 13 27 .078

STD=1 STD=2

30 22 14 24 .072

STD=2 STD=2

40 25 17 23 .071

STD=3 STD=2

Table 1. Best overall values for system parameters,

corresponding STDs over speech samples, and resulting
parametric distances. Length parameters are in terms of

the number of frames.

Figure 2. Time trajectories of the �rst four LAR
parameters for Lb = 30. Solid: original, dashed: approx-

imated.

dp = [

pX

i=1

jpar1i(n)� par2i(n)j2]1=2 (12)

where n is the frame index, p is the number of pa-

rameters for each frame, and par1(n) and par2(n) are
the original and the approximated LAR parameters
for frame n, respectively. Acceptable values for the

system parameters and their corresponding Standard

Deviation (STD) over speech samples are shown in ta-

ble 1. Note that the dispersion of points in the �gures
is due to the changes in the system parameters because
of rounding errors. A sample of spectral parameters

trajectories approximated by the method, obtained at
rate 1.2 kb/s, is displayed in �gure 2.

In all experiments, Log Area Ratio (LAR) parame-
ters were used for HTD analysis based on our previous

�ndings [7]. The frame length and frame period were
40 and 5 msec, respectively, whereHanning windowing
was used.

5. DISCUSSION

Results presented in table 1 and �gure 2 show that
HTD is able to conformwith the large variability found

in the LAR trajectories. This is achieved given two
major features of the method. First, the method is

not sensitive to the frame rate. Hence, as long as the
computational complexity is acceptable, the temporal
resolution of the system can be improved. In prac-

tice, a resolution of 5 msec could give excellent per-
formance, while 10 msec resolution could still yield

adequate accuracy. Second, the method, unlike most
other interpolationmethods [8], models co-articulation
which occurs at di�erent levels of the articulation. At

event rates
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Figure 3. Normalized implementation time on log scale
in terms of number of events located within each seg-

ment, where total number of events for the whole block
is taken �xed. Dotted line shows implementation time
for TD.

higher than true phoneme rate, the proposed method

characterizes co-articulation between consecutive sub-
phonemes through adaptation with statistical charac-
teristics of spectral parameters by adjusting the event

locations over the speech block. Increasing the number
of EAFs within each block could improve performance

of the method at the expense of increasing the coding
rate.

Table 1 also shows that HTD, unlike TD, does not
need long blocks of speech to process the signal. This
arises from the 
exibility of HTD which is achieved

by adjusting the method parameters, Lb, Le, and Lw,
based on the requirements in the coding system. Hence-

forth, the algorithmic delay can be reduced to about
100 msec, with very low distortion, as indicated in the
table. This makes HTD usable in many voice commu-

nication and storage applications.
The elimination of two time consuming tasks, SVD

and event re�nement, from TD is another signi�cant
advantage of HTD over conventional TD. Figure 3

shows the implementation time of HTD, in terms of
the number of events per segment, with respect to
that of TD. For the simplest case considered in sec-

tion 3, when only one event per segment is to be lo-
cated, HTD is more than ten times faster than TD.

This makes it plausible for real-time implementation
using most PCs.

At lower event rates, when the length of EAF is

comparable to the length of phonemes, HTD simu-
lates TD. The optimal performance is achieved using

an event re�nement algorithm, as that in conventional
TD. In this case, HTD again outperforms TD in al-

most all conditions from both viewpoints of accuracy
and computational complexity. Figure 4 shows the
distance between the original and the approximated

spectral parameters, using both TD and HTD, after
performing event re�nement. The drawback of TD

stems from its distant sidelobes which are likely missed
in sidelobe removal at each iteration in the re�nement
process [3]. This prevents TD to reach an optimal

state in the sense of minimum distance between orig-
inal and approximated parameters. HTD is free from

this shortcoming, as it uses monotonic, smooth func-
tions at the initial state [6].
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Figure 4. Parametric distance (distance between origi-
nal and approximated parameters) in TD and HTD versus

number of iterations in event re�nement through mean
square error minimization. TD: dashed, HTD: dashed-
dotted.

6. CONCLUSION

We have proposed, in this paper, a new method for
temporal decomposition of speech spectral parame-

ters using a hierarchical error minimization algorithm,
applied directly to the matrix of parameters, for the
purpose of speech compression. The method reduces

signi�cantly the computational load compared to that
with conventional TD. It also gives high 
exibility in

adaptation with the coding system speci�cations, such
as delay and accuracy. This makes the method appli-

cable in many speech coding applications such as voice
communication and voice storage.
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