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ABSTRACT where the consequences of this variability are apparent.

A stochastic approach to modelling speech production and pdvtany theories of speech production and perception claim that
ception is discussed, based on Itd calculus. Speech is modellgpeakers and listeners possess considerable knowledge of the way
by a system of non-linear stochastic differential equations evoltheir vocal tracts behave, and actively employ an “internal model”
ing on a finite-dimensional state space, representing a partiallpf articulatory behaviour to regulate and interpret articulatory-
observed Markov process. The optimal non-linear filtering equaacoustic variability in different environments. Despite the appear-
tions for the model are stated, and shown to exhibit a predictoance of numerous proposals of this type, the arguments justifying
corrector structure, which mimics the structure of the originathe hypothesis remain largely heuristic, and no quantitative or fal-
system. This is used to suggest a possible justification for thefiable mathematical model has ever been formulated or tested.

hypothesis that speakers and listeners make use of an “internal

model” in producing and perceiving speech, and leads to a usefliié &m of this paper is to demonstrate that speech production
statistical framework for articulatory speech recognition. and perception can be modelled within a very general statisti-
cal framework, using stochastic calculus, and to show that pro-

1. INTRODUCTION cedures for speech synthesis and recognition then follow natu-
rally from classical results in the theory of non-linear filtering.

Traditional models for speech recognition are based on represeRtior knowledge of articulatory behaviour is assumed to define a
ing phonological sequences and acoustic feature trajectories pyobability measure on a function space of physical state trajec-
simple forms of hidden Markov process, with various patterns dfories; speech production and perception then involve recursive
statistical dependency introduced between a hidden discrete statmstruction of a conditional probability measure on the same
space and an observed continuous measurement space. state space by integrating partial sensory measurement data. The
contribution of the paper lies in explaining that the concept of an

A common criticism of such models is that there is little resems, .-\ e is directly reflected in the structure of the op-

blance between the underlying model structure and the physicgl, filter, as provided by the two main theorems in this field,

processes involved in producmg real SPBECh- Consquently, It %ich have an intuitive and appealing interpretation for speech.
often been proposed that the introduction of true physical models

of speech production might provide a useful means of constrairFhe paper assumes a basic familiarity with stochastic calculus,
ing speech recognition, a more robust parameterisation of speeatcounts of which may be found in the references provided [3]
and better possibilities for interpreting recognition results. [4]. The non-linear filtering results stated in the paper are evi-

dently not original, and have been adapted from [4] [5] [6].
Conversely, traditional models of speech production typically at- y 9 v P 41 15116]

tempt to describe articulatory and acoustic data by proposing de- 2 HIDDEN MARKOV PROCESSES

terministic relationships between trajectories of abstract control

variables and trajectories of state variables representing the phygefore abstract modelling issues can be addressed, a general

ical state of the vocal tract and auditory system. mathematical representation is needed that does not overly rely
. ) o _on the details of any specific model. Here the essential prob-

These models often succeed in generating realistic state trajggq, ies in linking statistical properties of observed measurement

tories from a direct statement of basic physical principles, by, 1o physical laws governing underlying state trajectories, and
cannot reproduce the statistical patterns of variability observed W <chastic framework is therefore appropriate.

real measurement data. Previous papers have suggested that this
deficiency could be addressed if speech production models wekssume a complete underlying probability spage, F, P)
represented in a statistical framework [1] [2]. throughout. LetX = {X; : t € R1} be a stochastic process

) .. representing the physical state of the vocal tract, taking values in
Common to both speech production and speech recognition ISstate spacéSx, B(Sx)), and lety = {V; : t € R,} be a

the problem ofdescribinghow speakers systematically vary their ;qchastic process representing partial measurements of the state,
control strategies in different contexts, aexplaininghow lis- taking values in a state spa@8y, B(Sy)). DefineF* = {FX
teners succeed in recovering linguistic information from speech, - R} andFY = {F) :te ,R+} to be the right-continuous



filtrations generated bX andY” respectively. Definition 1

. . . Letp; be the functional defined by the expectation
Although the evolution of the state of any physical system in-

volved in speech production must usually be modelled by partial pe(P) = E{p(X:)}, (5)
differential equations defined on a function space of infinite di- ) ) )

mension, most of the important phenomena in speech arise frofffi€re¢ is any suitably-regular measurable function 8 .
vibratory systems whose response can be represented by localized

eigenmode expansions. By including only the dominant eigenJsing p;, the probability law of the process and all of its mo-
modes, or by making use of standard numerical simulation teciments can evidently be obtained by substituting appropriate func-
niques, adequate finite-dimensional representations of the undéons for ¢. The usefulness gf; centres on the existence of the
lying physics can be constructed, and little generality is lost byecursive representation stated in the theorem below.
restricting the model structure to a system of non-linear differ-

ential equations evolving on a finite-dimensional state spfige; Theorem 1

andSy can therefore be assumed to be Euclidean vector spacegye functionap is generated by the integral recursion

Furthermore, it is sensible to assume that the physical system t
modelled by the state process is causal, and therefore that the pe(¢p) = po(¢) +/ ps(Le)ds, (6)
future of the system is independent of its past, given the present 0
state. In a statistical framework, this immediately implies that th&hich can be written as a stochastic differential equation
state procesX must be a Markov process, and if it is assumed _
that only the measurement proc&sscan be observed, thek dpi(9) = p(Lo)dt, Q)
andY together define a general continuous-tiniéden Markov  \hereL is the operator defined by
model Under certain technical conditions, it is always possible X
to represenfl’ andY” as solutions of random integral equations, 0¢ 1 o°¢

L = A T X i j . 8

¢ ;g oz ZiZjU al'iaﬁjvj ( )

t t
X, = Xo—l—/g(Xs,s)ds—i—/U(Xs,s)st, @
0 0

t ¢ The operatol. is theextended generataf the Markov process,

i = Y +/ h(Xs, s)ds +/ w(s)dWs, (2)  and describes how the probability mass is transported along the
0 0 sample paths. Equation (7) describes the evolution ofittoen-

ditional or a priori probability law of the state process for any

dX; = g(Xi,t)dt +v(Xy,t)dVi, 3 choice ofg,h,v,w, and can be thought of as the “forward model”

dY, = h(X.,t)dt + w(t)dWs, 4) recursively characterising the statistical dynamics of the system.

whereV = {Vi : t e Ry} andW = {W, : t € R, } are The model description is now complete, and can be used for
independent Wiener processes, independenf,aindYp, andg, ~ Stochastic articulatory speech synthesisy generating Monte
h, v, w are appropriate measurable functions. Remark that ttfe@rlo simulations of the state trajectories that arise from solution
definition of the stochastic integrals in (1) and (2) necessarily if?f €quations (3) and (4), and by calculating the prior probability
volves the use of martingale calculus; previous attempts to defiitliStribution of the state and measurement processes using (7).
continuous-time models of speech appear to overlook this [7].

peech app ) 3. NON-LINEAR FILTERING
The stochastic differential equations implicitly define both the ) )
sample-path properties of, Y and their joint probability law. In order to use the model fatochastic articulatory speech recog-

The functionsy andh essentially determine the form of the state"ition, procedures must be derived to recover optimal estimates of
and measurement trajectories, and can be chosen to constrain i Physical state from partial or incomplete observations.

sample paths oX” andY’ to follow physically-realistic patterns. g pasic definition of the model structure generates the uncondi-

The functionsy and w determine how randomness ent_ers ir?toli_onal probability lawPx, for the state proces¥, for any partic-

the system, and can be chosen to reflect the systematic variabj|z, choice of state space and functigi,v,w, and this embod-

ity that affects the physical evolution of each component of thgss 41 of the prior knowledge about articulatory behaviour present
system state. In order tq interpret these eq_uatlons as a statistigalha model. If the state process cannot be observed, and no mea-
model of speech production, therefore, a suitable state space Mygtements are provided, then the optimal estimate of the hidden

be chosen and functiorys_h_, v, w selgcted to reflect prior knowl- ¢iq trajecton is given by the unconditional med&{ X, }.
edge about the deterministic physics of the vocal tract and the

random intentional variability underlying speech motor controlWhen partial observations of the state process are available
Remark that the model structure is general enough to encompabksough the measurement procéss it can be shown that the
both standard HMMs and articulatory or acoustic models as speptimal (minimum variance) estimate of the hidden state trajec-
cial cases; all that is required is a basic state-variable descriptidiory X; is provided by the conditional medd{ X;|F} }. More

generally, all of the information supplied by the measurements is

Once the model structure has been defined, the sample paths @ighodied in the shape of the conditional probability By, -
statistical properties of the state process can be calculated, and He

these can be used to examine the behaviour of the model. The dsreover, since the state and measurement processes are gener-
sential tool is the functional described in the following definition.ated recursively in time, it is of considerable interest to derive

which are usually written as stochastic differential equations,



recursive formulae for estimates of any function of the state. Thd.2. The Measure-Change Approach
solution of the state estimation problem for systems modelled b

non-linear stochastic differential equations is provided by two ke%
results, termed thKushner-StratonovichndZakaifilters.

n alternative approach to non-linear filtering is based on trans-
orming the original probability measure into a new measure, un-
der which the state and measurement processes are independent.
3.1. The Semi-Martingale Approach
Theorem 3 (Cameron-Martin-Girsanov)
The original approach to non-linear filtering was based on a gerrhere exists a measufe on (2, F), absolutely continuous w.r.t.
eralisation of the innovations method used to derive the Kalmap, such thatX andY are independent undeP, Y is a Wiener

filter, and is based on constructing the following functional: process undeP, and P coincides withP on FX.
Definition 2 Defining A; := E{dP/dP|F} }, construct another functional;
Letm, be the functional defined by the conditional expectation
v Definition 3
(o) = E{p(X)|F }, (9)  Let7 be the functional defined by the conditional expectation
whereg is any suitably-regular measurable function 8. Ti(¢) = B{p(Xi)A|F Y}, (14)

whereg is any suitably-regular measurable function 8g.
Using =, the conditional probability law of the process can be
obtained. The central result of tisemi-martingale approacto A simple relationship can be shown to exist betwaerand;;
non-linear filtering is the recursive representation stated below;

Theorem 4 (Kallianpur-Striebel)

Theorem 2 (Fujisaki-Kallianpur-Kunita) [5] For any suitably-regular measurable functignon Sx,

The functionalr, is generated by the integral recursion me(p) = (@) /me(1). (15)
t t
m(p) = wo(o) + / ws(Lo)ds + / os(h, ¢)dvs, (10)  Using7, the “unnormalized” conditional probability law of the
0 0 process can be obtained, and by applying Theorem 4 this immedi-
which can be written as a stochastic differential equation ately provides the conditional probability law. The central result
of themeasure-change approath non-linear filtering is the re-
dri(p) = m(Lp)dt + ai(h, p)dvy, (11)  cursive representation stated in the following theorem;

whereo, is the conditional covariance matrix defined by Theorem 5 (Duncan-Mortensen-Zakai) [6]

oi(hy¢) = mi(he) — me(R)mi(9), (12) The functionalr; is generatted by the |ntegre:I recursion
and, is the innovations process defined by m(¢) = To(d)+ / 7s(Lo)ds + / 7i(h, ¢)dYs(16)
0 0
¢ which can be written as a stochastic differential equation
vi = Y — / ms(h)ds. (13) q
0 dw(¢) = Ti(Lo)dt+Ti(h,¢)dY:, 7

The solution of the filtering problem thus consists of a stochasti\é/hereat Is the conditional correlation matrix defined by

differential equation evolving on the hidden state space, and this Gi(h,¢) = Tu(he). (18)
equation has an interesting structure. ExaminingKhshner-

Stratonovich filter(11), the first term reproduces a conditionalOnce again, the solution of the filtering problem consists of
version of the “forward model” in equation (7) describing the truea stochastic differential equation evolving on the hidden state
state process, and predicts the way that the system is believedspmace, but now under a different probability measure. Examin-
evolve given prior knowledge. The innovations processle- ing theZakai filter(17), the first term employs a conditional ver-
fines the error between the observed measurement trajectory aidn of the “forward model” defined in equation (7) to predict the
the expected measurement trajectory predicted from the interralolution of the system state, as before. The conditional correla-
state of the filter, whereas the conditional covariaticeneasures tion ; measures the expected agreement between the observed
the expected size of the discrepancy between observation and pmeeasurement trajectory and the expected measurement trajectory
diction. The second term in equation (11) corrects the predictigoredicted from the system state. The second term in equation (17)
provided by the forward model, by adjusting the filter state by amorrects the prediction provided by the forward model, by adjust-
amount proportional to the measurement error, weighted by dng the filter state according to the correlation between the true
estimate of how large the model expects this error to be. observation and the filter prediction.

Interpreting this result for speech, the non-linear filter implementinterpreting this result for speech, the non-linear filter again im-

an intuitive and logical “predictor-corrector” structure, which isplements a “predictor-corrector” structure, based on using an “in-
based on using an “internal model” of articulatory dynamics tdernal model” of articulatory dynamics to propagate the state es-
propagate the state estimate, corrected by the perceived obsenuaate, but this time the state estimate is corrected according to
tion error calculated recursively from the measurements. the perceived correlation with the measurements.
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