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ABSTRACT

Speech is typically modelled using time-domain or frequency-
domain simulations of the acoustic field in the vocal tract. Us-
ing a biorthogonal modal decomposition, it is shown that time-
domain finite-difference simulations can be transformed alge-
braically into equivalent formant synthesizers, the parameters of
which vary in time and are calculated directly from the laws of
physics. Examining the structure of the equivalent formant syn-
thesizer, it is observed that formant excitation is largely due to
internal modal coupling effects, induced by rapid perturbation of
the acoustic eigenmodes caused by vibration of the glottis, and
does not rely precisely on external sources provided by boundary
conditions. This leads to a novel interpretation and justification
of traditional models of the glottal source.

1. INTRODUCTION

Acoustic models of speech production are typically based ei-
ther on frequency-domain simulations, which generate formant
synthesizer parameters from a glottal waveform and quasi-static
sequence of area functions, or on time-domain simulations,
which calculate the detailed evolution of a spatio-temporal pres-
sure/velocity field from a dynamic specification of the entire vo-
cal tract shape, including the glottis.

Frequency-domain simulations are stable, easy to implement, and
generate parameters that directly describe the spectral properties
of synthetic speech, but cannot easily account for properties of
the voice source, and are not strictly valid for time-varying area
functions. Time-domain simulations generate the entire dynamic
acoustic field directly from basic physical principles, without arti-
ficially separating "source" and "filter", but cannot easily be used
to extract meaningful spectral parameters (e.g. formant frequen-
cies and bandwidths) without a considerable amount of inaccurate
post-processing. Neither method provides a complete account of
the underlying mechanism by which glottal motion excites the
acoustic eigenmodes of the vocal tract during phonation to pro-
duce voiced speech.

The purpose of this paper is to demonstrate that it is possible to
establish a formal mathematical equivalence between the struc-
ture of time-domain and frequency-domain simulations of acous-
tic wave propagation in the vocal tract, by introducing an ex-
plicit time-varying modal representation of the sound field. Us-
ing the proposed technique, it is shown that time-domain finite-

difference simulations can be used to generate equivalent formant
synthesizers, the parameters of which are calculated implicitly
from the underlying laws of physics, given a time-varying area
function for the entire vocal tract. The sound field generated by
the time-domain simulation can then be broken down into indi-
vidual modal components, each of which corresponds to a single
formant, with the advantage that the mechanism generating each
formant oscillation is made transparent. Simulation results sug-
gest that formant excitation is largely caused by internal modal
coupling effects, induced by rapid perturbation of the acoustic
eigenmodes caused by vibration of the glottis, and does not rely
precisely on external sources provided by boundary conditions.

The results described in this paper are of both theoretical and
practical interest, since the technique provides a means of
analysing and controlling the behaviour of time-domain simula-
tions of vocal tract acoustics directly, while contributing to an ex-
planation of the mechanism underlying the generation of sound.

2. ACOUSTIC MODEL

Suppose that the vocal tract can be modelled as an elastic tube
of length L and time-varying cross-sectional areaA : 
 ! R

defined on a bounded rectangle
 = f(x; t) : x 2 [0; L]; t 2
[0; T ]g in R2 , wherex represents the distance along the tract mid-
line from the trachea to the lips, andt represents time.

Assume that the physical state of the air within the tube can be
represented by functions�; P; U; Y : 
 ! R representing re-
spectively the density, pressure, particle velocity, and radial wall
displacement from equilibrium measured along the tube length,
averaged over the tube cross-section. If the sound field is taken to
consist of isentropic compressible perturbations�1; P1; U1; Y1 :

 ! R of a perfect gas, superimposed on an underlying in-
compressible mean flow�0; P0; U0; Y0 : 
 ! R, and if the
mean pressure and particle velocity are assumed to be zero, the
acoustic field can be expressed in terms of dimensionless groups
�; p; u; y : ! ! R defined on a domain! = f(�; �) : � 2
[0; 1]; � 2 [0; cT=L]g, wherec is the local sound speed and

p := P1=�0c
2, � := A=L2,

u := U1=c, � := x=L,
y := Y1=L, � := ct=L.

Neglecting viscous effects, it can be shown that the conservation
laws defining quasi-one-dimensional mass and momentum bal-



ance are then described by the following equations (cf. [1]):
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and the walls of the vocal tract can be modelled in the usual man-
ner as a normally-reacting elastic membrane under tension, with
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wherewm, wk, wb,wt are dimensionless constants related to the
density, elasticity, damping, and tension of the wall tissue.

Assume that the vocal tract is initially in a state of equilibrium,

� = 0 : p(�; 0) = u(�; 0) = y(�; 0) = _y(�; 0) = 0; (4)

that a constant acoustic pressure is applied at the trachea entrance,

� = 0 : p(0; �) = p�; (5)

and that radiation at the lips can be modelled by the equation

� = 1 :
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�p� �b�p = 0; (6)

where�a and�b are dimensionless functions of the lip aperture.

The system of partial differential equations (1)-(3) together with
the boundary conditions (4)-(6) define the basic physical laws
governing the evolution of the sound field in the vocal tract. So-
lutions cannot in general be obtained analytically, but must be
calculated instead by numerical simulation.

Applying the finite-difference method, a gridf(�j ; �k) : j =
1; : : :M; k = 1; : : : ; Ng is imposed on!, and partial derivatives
are replaced by discretized approximations expressed in terms of
functions evaluated at the grid points. Denoting byZk the vector
of acoustic state variables on all grid pointsf�jg at time�k, and
takingZ0 = 0, the resulting system of linear algebraic equations
can always be written as an implicit time-varying recursion,

PkZk = QkZk�1 +Rk; (7)

wherePk, Qk are sparse banded matrices whose elements are
functions of�(�; �), andRk is a driving function derived from
the boundary conditions. Under minor restrictions on�, a unique
solution of the recursion exists, and if the chosen finite-difference
scheme can be shown to beconsistentandstable, the discretized
solution will converge to a solution of the original partial differ-
ential equations as the discretization intervals tend to zero.

The principal interest lies in deriving a complete characterisa-
tion of the family of solutions of the finite-dimensional system
of equations represented by (7), in terms of the area function�,
and in using this to establish a useful physical interpretation for
the structure of the corresponding family of solutions of the orig-
inal infinite-dimensional system of equations (1)-(6).

Since both the original equations and their numerical approxima-
tion describe linear time-varying systems, the space of possible
solutions on continuous and discretized domains can be described
as a superposition of characteristic modal vibrations, correspond-
ing to acoustic resonances of the vocal tract, and the problem
essentially consists in determining the time-varying eigensystem
of the recursion, onto which any solution can then be projected.

3. MODAL ANALYSIS

The use of modal analysis in characterising the behaviour of
finite-difference schemes is well-known, and forms the basis for
many common methods of proving stability and convergence.
Titze [2] was the first to apply the technique to speech, and used
it to analyse the vibrations of a linear time-invariant model of the
glottis. Other authors [3] [4] [5] [6] have since applied simi-
lar methods to examine the behaviour of static acoustic models.
The derivation below, detailed in a previous paper [7], applies
to a generaltime-varyingmodel, and can be used to calculate the
acoustic eigenmodes of the vocal tract at each point in time.

DefineMk(�) : � 2 C to be the regular matrix pencil given by

Mk(�) = Pk�+Qk: (8)

Let Uk, Vk be the matrices of left and right latent vectors of
Mk(�) respectively, and let�k be the diagonal matrix of complex
latent roots. Under the assumption that the right latent vectors are
linearly independent,Uk andVk may be chosen to satisfy

UH
k PkVk = I; (9)

U
H
k QkVk = �k; (10)

whereH denotes the conjugate transpose. Denoting byEk the
projection ofZk onto the right eigenspace ofMk(�), we have

Ek = UH
k PkZk; (11)

Zk = VkEk; (12)

and equation (7), transformed into the modal domain, becomes

Ek = �k(U
H
k PkVk�1)Ek�1 + U

H
k Rk: (13)

The diagonal elements of�k are the time-varying complex poles
of the acoustic model, and can be used to calculate the instanta-
neous formant frequencies and bandwidths of the modelled vocal
tract. The columns ofVk represent the instantaneous spatial dis-
tributions of pressure, velocity, and wall displacement associated
with each formant, and define the characteristic vibrations of the
system. The columns ofUk define projections onto the corre-
sponding invariant subspaces, and determine the relative propor-
tion of energy entering each eigenmode at time�k from a source
Rk distributed along the length of the vocal tract. Of particular
interest is the term(UH

k PkVk�1), which reduces to the identity
matrix for a static area function, and represents a dynamic leakage
of energy between the different formants when the eigenmodes of
the system change in time. To make this explicit, equation (13)
may be re-written for a single elementeik of Ek as
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wherecik andsik are defined by
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The finite-difference recursion (7) can therefore be transformed
into a bank of first-order modal oscillators with time-varying co-
efficients, each of which is driven by an externalsource term
sk derived from the boundary conditions and a internalcoupling
term ck which represents a transfer of energy between different



eigenmodes. The effective excitation driving each formant is the
sum of the corresponding source term and coupling term.

It is of considerable interest to compare the modal structure of the
finite-difference simulation, which resembles a classical formant
synthesizer and can be calculated directly from the underlying
physics, with the structure of a traditional formant synthesizer,
where parameters are chosen heuristically from prior knowledge,
or from quasi-static frequency-domain models (e.g. [8]).

4. SIMULATION RESULTS

Simulation results are provided here to illustrate the modal anal-
ysis procedure for a simple time-varying area function represent-
ing the vowel=u=. Figure 1 shows the static tube shape used to
model the trachea (20 grid points) and oral tract (80 grid points).
Figure 2 shows the area variations imposed at the glottis (8 grid
points). A sampling frequency of 80kHz was used throughout.

Illustrations of the temporal evolution of the acoustic eigenval-
ues and eigenvectors and corresponding formant frequencies and
bandwidths for a similar time-varying area function were pre-
sented previously [7], and will be omitted here; the purpose of the
present paper is to examine in detail the mechanism responsible
for generating the underlying formant oscillations.

Figure 3 shows the pressure waveform/spectrum generated at the
lips by the finite-difference recursion. The oral tract formants are
clearly visible in both time and frequency domain representations,
but cannot be separated using signal processing methods alone.

Figure 5 shows the pressure waveform at the lips obtained by
projecting the entire sound field onto the time-varying eigenspace
associated with the first oral formant. The result is a pure formant
oscillation, with time-varying centre frequency and bandwidth,
that corresponds well with the 1st spectral peak in Figure 3.

Figure 6 shows the modal amplitudeek of the first oral formant,
representing the projection of the same formant oscillation illus-
trated in Figure 5 onto the associated eigenspace.

Figure 7 shows the external source termsk describing the in-
jection of energy from the boundary conditions into the formant
illustrated in Figure 5. For the oral formants, this is a slowly-
varying signal that closely follows modulations in the glottal area.

Figure 8 shows the internal coupling termck describing the injec-
tion of energy from other formants into the formant illustrated in
Figure 5. Remarkably, it consists of a sequence of rapid primary
and secondary spikes located at the instants of glottal opening and
closure. The relative amplitude of the spikes has been found to
depend strongly on the phase and speed of glottal movement, on
the formant frequency, and on the shape of the oral tract.

Figure 4 shows the total excitation driving the first oral formant,
obtained by summing external and internal source terms. A se-
quence of half sinewaves is generally obtained, terminating in
abrupt pulses at the moment of glottal closure. The excitation
spectrum is dominated by the contribution of the internal source.

The results shown in Figures 3-8 describe part of the input and
output for a formant synthesizer that is algebraically equivalent
to the original finite-difference simulation. It is remarkable that

the modal excitation, which arises automatically from the internal
structure of the physical simulation, has roughly the same form as
a traditional model of the glottal source [9]. The crucial point to
note is that formant oscillations are generated by the model in
an abstract modal domain, and the equivalent excitation needed
to drive each individual formant resonator doesnot then corre-
spond to an acoustic source localized at the glottis, but instead
consists of an external source term derived from an energy source
distributed along the vocal tract length, and an internal coupling
term arising from modal leakage between the formants caused
by rapid perturbation of the acoustic eigenmodes. During the
open portion of the glottal cycle, energy appears to be absorbed
from the boundary conditions through the source term, and then
abruptly redistributed among the different formants by the cou-
pling term at the moment of glottal closure. It is the coupling
term, not the source term, that dominates the excitation spectrum.
Similar results hold for different formants and area functions.

5. CONCLUSIONS

By introducing a biorthogonal modal decomposition, it has been
demonstrated that it is possible to obtain an equivalent formant
synthesizer with time-varying parameters from a time-domain
finite-difference simulation. Speech can indeed be modelled cor-
rectly by a source-filter structure, and the excitation does indeed
have the form claimed in the literature; this can be justified di-
rectly from the underlying physics, but in order to do so, formant
oscillations need to be represented in an abstract modal coordi-
nate system, and the formant excitation needs to be carefully de-
composed into external source and internal coupling components.
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Figure 1: Static area function for vowel=u= (F1).
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Figure 3: Pressure waveform for vowel=u=.
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Figure 5: Modal pressure waveform for vowel=u= (F1).
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Figure 7: Modal source term for vowel=u= (F1).
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Figure 2: Dynamic glottal area waveforms for vowel=u=.
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Figure 4: Modal excitation for vowel=u= (F1).
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Figure 6: Modal amplitude waveform for vowel=u= (F1).
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Figure 8: Modal coupling term for vowel=u= (F1).


