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ABSTRACT

This paper studies the reliance of a Gaussian Mixture Model
(GMM) based closed-set Speaker Identification system on
model convergence and describes methods to improve this
convergence.  It shows that the reason why the Vector
Quantisation GMMs (VQGMMs) outperform a simple GMM is
mainly due to decreasing the complexity of the data during
training.  In addition, it is shown that the VQGMM system is
less computationally complex than the traditional GMM,
yielding a system which is quicker to train and which gives
higher performance.  We also investigate four different VQ
distance measures which can be used in the training of a
VQGMM and compare their respective performances.  It is
found that the improvements gained by the VQGMM is only
marginally dependant on the distance measure.

1. INTRODUCTION

Gaussian Mixture Models (GMMs) are used for a broad variety
of statistical pattern recognition applications, including Speaker
Identification (SI) [1].  It has been suggested that one factor
which limits on the effectiveness of a Gaussian Mixture Model
is its convergence while training [2].  The goal of this paper is to
investigate and improve the convergence of the Model, and
hence the accuracy, of the GMM in a closed-set SI system.

In [3] the authors have reported performance gains in the NIST
evaluation training set when a GMM is preceded by a Vector
Quantisation stage, yielding a VQGMM system.  However, their
paper neither investigates the reason for this improvement nor
the application this may have to other systems.

In this paper, we perform a thorough investigation into this
improvement in the VQGMM and conclude that it is due to
improved convergence of the GMM.  In addition, a relationship
between clustering and model convergence is found and the
complexity improvements over a normal GMM system
investigated.  Finally, a comparison of four VQ distance
measures is made with respect to model convergence.

2. VQGMM SYSTEM

The VQGMM system consists of two stages; a Vector
Quantisation algorithm and a Gaussian Mixture Model
algorithm, as shown in Figure 1 [3].
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Figure 1: Block Diagram of the VQGMM System for SI

Initially, the data is broken into clusters using the k-means
algorithm [4]. A multi-variate, continuous density GMM with
nodal, diagonal covariance matrices [1] was trained on each
cluster using the expectation-maximisation (EM) algorithm.  As
such, each speaker is characterised by a number of GMMs,
trained on each VQ cluster.

When the system is used to recognise the speaker of a test
utterance, the log-likelihood of each feature vector is calculated
with respect to each individual GMM and each speaker.  The
value obtained is maximised over all clusters and speakers and
the maximum value is labelled as the identified speaker.  It
should be noted that the testing phase involves no Vector
Quantisation process.

Using this VQGMM technique, the authors of [3] were able to
obtain a 10% reduction in error rates over the conventional
GMM system.

It is argued in [3] that the model parameters can be better
estimated by clustering the signal space into a number of smaller
sub-spaces, such that feature vectors far away from the GMM
have no effect on the GMM.  However, no investigation has
been carried out into these improvements in the estimation of
model parameters.

1This project was supported by a research contract from the Defence,
Science and Technology Office (DSTO).



3. DESCRIPTION OF THE SYSTEM

The VQGMM system was used to recognise forty-nine speakers
in the wide-band portion of the King database [6].  The system
was trained using the first session of the data and then tested on
the remaining nine sessions.

Fifteen-dimensional Mel-Frequency FFT derived Cepstral
Coefficients (MFCC) were used to parameterise the data.  These
coefficients were derived using a frame size of 32ms and a
frame advance of 10ms.  A low energy thresholding technique
was used to remove silence from the speech.

In this study, the EM algorithm was run for a number of
iterations, or until the change in training error of successive
iterations (delta training error E∆ ) fell below a certain
threshold.  Both the number of training iterations and the
threshold were varied during testing.

During testing, the speech was divided into 5s segments with a
10ms frame advance.  Each segment was then tested
individually after the noise had been extracted.

4. VQGMM PERFORMANCE

Figure 2(a) and 2(b) show graphs of the performance of the
VQGMM system, obtained with a number of VQ clusters (V)
and GMM mixtures used for each speaker.  Note that V=1
corresponds to the normal GMM without VQ.

The VQGMM system gives up to 5% improvement in
recognition over a normal GMM.  In addition, optimal
performance is obtained with separation into V=15 VQ clusters
with M=3 Gaussian Mixtures trained on each cluster.

5. VQGMM Convergence

We also carried out a quantitative evaluation of the convergence
of each model in the VQGMM system, by recording how many
iterations of the EM algorithm are performed before GMM
convergence.  As mentioned above, this convergence criterion is
determined by E∆ over each iteration of the EM algorithm.

This measure gives an indication of the complexity of the
training data and the ease of training the GMMs on the data.  If
the change in training error fell below a certain threshold during
the course of training, the model was said to have converged.

Figure 3(a) and 3(b) show the average number of iterations until
model convergence for different VQGMM systems.  This graph
displays the total number of iterations for all 49 speakers.

It was found that the number of iterations taken for the GMM
models in the optimal VQGMM systems was under 500,
compared to 1800 for a normal GMM in the 49 speaker SI
problem.  It can be seen that the performance gains in each
system investigated directly match convergence improvements.

These improvement gains over the original GMM system is
partly due to the improvements in model convergence, as
suggested in [3].  However, there  are other reasons for this
improved accuracy, such as the clustering itself assisting the
GMM system.  Clustering methods are investigated in Section 7.
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(a) 25 Iterations, Delta Training Error ( E∆ ) = 0.005

(b) 40 Iterations, Delta Training Error ( E∆ ) = 0.0005

Figure 2: Accuracy of the VQGMM System.

(a) 25 Iterations, Delta Training Error ( E∆ ) = 0.005

(b) 40 Iterations, Delta Training Error ( E∆ ) = 0.0005

Figure 3: Convergence of the VQGMM System.
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6. COMPUTATIONAL EFFICIENCY

It can be shown [5] that the EM Algorithm for the training of the
Gaussian Mixture Model can be broken into a number of stages.
An investigation of these stages shows that the highest order
complexity stage is the fifth stage when nodal, diagonal
covariance matrices are used.  This stage is involved with the
mathematical evaluation of the equation:
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where D is the dimensionality of the Feature Vectors, S is the
number of sample vectors and M is the number of Gaussian
mixtures used to model each cluster.

For I iterations of the EM Algorithm, this yields an order of
computational complexity for the GMM system equal to

( )MSDIOOGMM ⋅⋅⋅= (2)

as I, D, S and M become large.

In the VQGMM system using V clusters and the same number
of mixtures overall, the order of computational complexity
equation of the VQGMM and GMM may be compared using the
following assumptions:

• The number of iterations (I) of the EM
Algorithm is reduced by a factor C (~2),
corresponding to the reduction in VQGMM
iterations.

• The number of training Feature Vectors (S) for
each GMM is reduced by a factor of V

• The number of Mixtures required in each GMM
(M) is reduced by a factor of V

• The number of GMMs to be trained is increased
by a factor of V

• The dimension of the feature vector D remains
the same.

By combining these manipulations, the order of complexity of
the VQGMM may be written as:
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As seen above, the amount of processing required to train the
model is reduced by a factor equal to the product of the number
of clusters by the improvement in convergence, for identical
testing times.  For the system above with 15 clusters and a
convergence improvement factor of 2, this corresponds to a
thirty-fold decrease in training time over the conventional GMM
system.

It should be noted that this analysis does not take the
computational complexity of the VQ clustering phase into
account.  An analysis of the VQ c-means algorithm yields the
computational complexity to be of order )( VSDO ⋅⋅ , and does
not greatly affect the VQGMM system.

7. CLUSTERING METHOD

We postulate that there are number of different reasons for the
model convergence improvements using the VQGMM system.

The first reason is due to the system breaking the feature space
into a number of homogenous sub-spaces.  These sub-spaces are
less complex and, as such, aid convergence of the model.  The
reduced complexity of the sub-spaces is apparent, due to the
fewer number of mixtures required to model the sub-space.

A second reason for improved convergence is due to the fact that
the data is clustered using first order moments (the cluster
means).  This may assist the GMM, which uses the first order
moments as the centre of each mixture.

It was decided to investigate the inclusion of second order
moments into the VQ clustering phase.  The suitability of these
clusters to future GMM classification can be measured, giving
an insight into the features of a good clustering technique.  In
addition, this may also give an insight into the overall
improvements attributed to the VQGMM system.

7.1. Clustering Methods

We compare the use of four systems to cluster the data and train
the GMM, each using a different distance measure in the final
VQ phase.  The four methods use the Euclidean, the Weighted
Euclidean, the Mahalanobis and the City Block distance
measures respectively.

The four distance measures are defined below: [7]

Euclidean Distance: The Euclidean distance method
accumulates the square difference between the two vectors
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Weighted Euclidean Distance: The Weighted Euclidean
distance method is identical to the Euclidean distance method
but takes the reference vector variance components into account.
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where D  is the diagonal variance matrix.

Mahalanobis Distance: The Mahalanobis distance method
includes the variance and correlation of the vector components.
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where W  is the square covariance matrix.

City Block Distance: The City Block distance, or absolute
value distance, simply accumulates the absolute difference
between each component of two vectors.
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7.2. Results

We present results for the clustering methods using the four
different distance measures.  The system was tested using eight
Vector Quantisation clusters with a number of GMM mixtures



in each cluster.  The convergence criterion used was a Delta
Training Error ( E∆ ) of 0.0005 and a maximum of 40 iterations
of the EM algorithm were used.

The results of the investigation are shown in Figure 4.

As can be seen in the figure, there does not seem to be a great
difference between the four different methods, although the
Weighted Euclidean method does outperform the Euclidean
method by around 1%.  This is also reflected slightly in the
convergence investigation, where the normal Euclidean method
takes more iterations of the EM algorithm to converge.  It is also
interesting to note that any measure may have been used in the
system, including the less computationally complex City Block
distance measure.

This result adds more weight to the results obtained in the
previous section; the improvements offered by the VQGMM
system are due to the reduction in the model complexity for each
GMM, assisting the EM algorithm.

8. CONCLUSION

This paper has performed an extended investigation into an
inprovement to the GMM system; the VQGMM.  It shows a
relationship between the number of iterations required of the
EM algorithm and improvements in accuracy and suggests that
they may be due to improved EM Algorithm convergence.

A second component of this paper is a qualitative investigation
into the computational complexity of the VQGMM system.  It
was found that the system offered an order improvement in
model training complexity equal to the number of VQ clusters.

The final element of this paper was an investigation into the
reliance of the VQGMM system on the distance measure used.
Four distance measures were investigated, and it was found that
there was little difference between them.   It was found,
however, that the normal Euclidean distance measure performed
the most poorly and took the largest number of iterations to
converge.
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Figure 4: Comparison of Clustering Methods


