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ABSTRACT

We consider the problem of detecting stop consonants in continu-
ously spoken speech. We pose the problem as one of finding the
optimal filter (linear or non-linear) that operates on a particular
appropriately chosen representation. We discuss the performance
of several variants of a canonical stop detector and consider its
implications for human and machine speech recognition.

1. INTRODUCTION

We are exploring a framework for speech recognition that utilizes
the notion of distinctive features. An important problem that has
to be solved for the success of such an approach is the accurate
and robust detection of phonetic events. The acoustic cues for
the different phonetic events are distributed non-homogeneously
in the time-frequency plane, so separate detectors will be con-
structed for each of them. This is in contrast to approaches that
use the same representation for all sound classes without special
attention to their particular attributes. In this paper, we focus on
the problem of detecting stop consonants in continuous speech.
Stops present a challenging case because of their highly transient
acoustic characteristics. Progress on this problem will be useful
for speech recognition as well as automatic speech segmentation.
Some aspects of this work that we would like to highlight are:

a) the signature of a stop consonant is a closure followed by a
sharp release of broadband energy, especially at high frequencies.
We therefore represent a stop by its spectrum and its Wiener en-
tropy that provides a measure of spectral flatness to characterize
the broadband nature of the burst. All spectra have been computed
using multi-tapered spectral methods [5].

b) We propose to solve the problem of stop detection by construct-
ing an optimal filter that operates on the above representation such
that the output is high when there is a stop and low otherwise. Pre-
vious attempts at stop detection have typically attempted to take
derivatives in appropriately chosen energy bands [2]. While this
is intuitively a reasonable thing to do, differential operators are
not necessarily optimal for stop detection. The filter derived by
our method depends on the optimality criterion chosen. We com-
pare the performance of several optimal filters with that of the
differential operator, and show significant improvement.

c) We obtain ROC curves for the stop detection problem on the
multi-speaker TIMIT database. When the correct detection rates
range from 70 to 90 percent, the insertion rates range from 5 to
20 percent. (equal error rate — 16 percent). This is shown to
be reasonably competitive with traditional HMM based methods.
Crucially, however, our filtering framework requires 33 parame-
ters trained from 4 speakers — a vast reduction in the number of
parameters and consequently the amount of training data.
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Figure 1: Portion of the speech waveforms(n);(top panel), the
associated three-dimensional feature vector,x(n) (middle panel),
and the desired outputy(n) bottom panel marking the times of
the closure-burst transition.

d) We show that in the above approach most of the false nega-
tives are due to poorly released stops; many of the false positives
can be explained as glottal stops or closures followed by strident
fricatives (these are perceptually often like stops).

e) While detailed results are presented for the case of stops, our
approach can be utilized to detect other kinds ofphonetic events
as well, and we will comment on these in the paper.

2. THE STOP DETECTION PROBLEM

Stop consonants are produced by causing a complete closure of
the vocal tract followed by a sudden release. Hence they are
signalled in continuous speech by a period of extremely low
energy (corresponding to the period of closure) followed by a
sharp, broad band signal (corresponding to the release). As a re-
sult, stops consonants are highly transient (dynamic) sounds that
have a varying duration lasting anywhere from 5 to 100 ms. In
American English, the class of stops consists of the soundsf

p,t,k,b,d,gg.

In order to build a detector for stop consonants in running speech,
the speech signal,s(t); is characterized by a vector time series
with three dimensions — (i) log(total Energy) (ii) log(Energy
above 3kHz) (iii) spectral flatness measure based on Wiener En-
tropy defined as

R
log(S(f; t))df � log(

R
S(f; t)df): All quan-

tities are computed using 5 ms windows moved every 1 ms. Mul-
titapered estimates [5] are computed for the spectra from which
energies and Wiener entropy are then calculated. Thus, we have
x(n) = [x1(n) x2(n) x3(n)]

0 wheren represents time (dis-
cretized in units of milliseconds) andx1 throughx3 are the three



acoustic quantities that are measured every 1 ms. Energies at 1 ms
intervals potentially allow us to track rapid transitions that would
otherwise be smoothed out by a coarser temporal resolution. This
is particularly important since previous studies (e.g. [4]) indicate
that burst durations for voiced stops could be as short as a few
milliseconds. The Wiener entropy based flatness measure can be
interpreted as a Kullback-Liebler divergence betweenS(f; t) and
a flat spectrum. It is also related to the predictability of the process
s(t):

We need to find an operator on the feature vector time series that
will return a single dimensional time series that takes on large val-
ues around the times that stops occur and small values otherwise.
The most natural points in time that mark the presence of stops
are the transition from closure to burst release. Shown in fig. 1
is an example of a speech waveforms(n); the associated feature
vector time seriesx(n) and a desired outputy(n): The technical
goal is to find an operatorh on the time seriesx(n) that produces
an outputyh(n) = h�x(n) such thatk y�yh k is small in some
sense (norm). Specifically, we choose the optimal operator(from
some classH of operators) according to the criterion

hopt = arg min
h2H

R(h) = arg min
h2H

E[(y� yh)
2
] (1)

it is easy to show that this is equivalent to approximating (byyh)
the conditional density time seriesp(n) = E[fy(n)gjfx(n)g] =

P (y(n) = 1jfx(n)g) for the case wheny(n) takes values in
f0; 1g: Thusp(n) is the conditional probability of a stop at time
n given the time seriesfx(n)g:

In this paper, we consider only linear convolution operators
h � x = h � x: In actual practice, we deviate from the formu-
lation of eqn. 1 since we don' t have access to the true distribution
that generates the time seriesfx(n); y(n)g and so cannot com-
puteR(h): We actually approximateR(h) by an empirical risk
Remp(h) computed from labelled examples (training data) given
by:

Remp(h) =

NX

k=1

NkX

n=1

w
(k)

(n)(y
(k)

(n)� y
(k)

h (n))
2

Here,N is the number of sentences in the training set. Each sen-
tence corresponds to a particular realization of the process(x; y)

andNk is the length of thekth sentence. Let thekth sentence in
the training set havemk stops with corresponding closure-burst
transitions occuring at timesnkl (l 2 f1; : : : ;mkg) respectively.
Theny(k)(n) is 0 everywhere except for values ofn = nkl where
it takes the value1: The weighting function,w(k)

(n); is also0�1-
valued withw(k)

(n) = 1 everywhere except for0 < jn�nklj <

W where it takes the value0: Finally, thekth filtered output,
y
(k)

h (n); is given byy(k)h (n) =
P

3

i=1

P
j
x
(k)

i (n� j)hi(j):

Some remarks are in order:

1. This is an optimal filter design problem whose solution can
be solved by adaptive means using Recursive Least Squares tech-
niques. The filter can be trained from data to optimally match the
desired outputy: Taking derivatives of energy (correspondingly

differences of energy at successive times) corresponds to a partic-
ular choice of the linear filterh.

2. The functionw(k)
(n) serves to weight the data so that parts of

the signal near a stop transition (but not exactly at it) are not taken
into consideration — it acts as a “don' t care” region because it is
not completely clear what a desirable output is near a transition.
Further, from a numerical point of view, this allows the output
y
(k)

h
some time to move smoothly from 0 to 1 and back again to

0 at the stops. In our experiments, the value ofW was set at 6,
i.e., a don' t care region was effective from 5 ms before to 5 ms
after a closure-burst transition. An optimal choice ofW was not
attempted.

3. In our experiments, we sethi(m) to be zero ifjmj � 6: Thus
there were (33 = 3� 11) free parameters for the filter that were
then optimally learned from the training data in the manner de-
scribed. On a test sentence, stops were detected by thresholding
the outputyh obtained by filtering the feature vectorx with h:

3. EXPERIMENTAL RESULTS

We present results of several stop detection algorithms on the
TIMIT database. All results are presented on dialect region 4 of
the test set containing 32 speakers, 16 male and 16 female saying
ten sentences each, resulting in a total of 320 sentences. At ev-
ery point in time (ms), the detection algorithm could potentially
postulate the existence of a stop — clearly, as in any detection
problem, one will need to balance the false acceptance rate (per-
centage of false detects, i.e., insertions) against the false rejection
rate (percentage of stops not detected). As one varies the thresh-
old for acceptance, corresponding ROC curves are generated and
shown in fig. 2.

The overall conclusion from these experiments is that it is possible
to attain an equal error rate of about 16 % on TIMIT speakers with
a 33 parameter linear filter. It is possible to improve this to 12 %
by moving to a non-linear filter with capacity control but we do
not describe those results here.

A. This takes energy differences. The specific operation is given
by yh =

P
2

i=1
(xi(n)� xi(n� 1)):

B. Taking optimized differences but only on energy components
of x: Thusyh =

P
2

i=1

P
j
xi(j)hi(n � j) but the values of

hi(m)'s are now chosen optimally by minimizingRemp(h) con-
structed appropriately.

C. Taking optimized differences with all three components of the
vectorx; i.e., the two energy components and the Wiener entropy.
This is the complete formulation described in the previous section.

Some further points need to be made here:

1. In order to go from the outputyh to a set of candidate timesni
where stops are postulated, we need a decision rule. An appropri-
ate one to use is to thresholdyh and pick peaks after thresholding.
Each candidate peakni; was considered to be a correct detection
if it was within 20 ms of the TIMIT labelling of the closure-burst
transition, else it was considered to be a false insert.
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Figure 2: ROC curves for detection of stop consonants using
three different algorithms.

2. Since there are only 33 parameters in the full-scale linear filter,
the optimal parameters can be derived from very few training data.
Specifically, in this case, we selected 4 speakers at random (2
male and 2 female) from the TIMIT training data base with 10
sentences from each, making a total of 40 sentences on which the
detectors were trained.

3. Researchers have considered the problem of detecting phonetic
events in running speech [1, 2, 3]. Unfortunately, they have not
published ROC curves, nor compared their performance to other
methods.

4. The ' *' shown in the plot corresponds to the performance of
a full blown HMM (32 mixtures; 3 state left-to-right models; 47
phonemes; free grammar; 450,000 parameters). The HMM was
trained on an extremely data base with similar acoustic charac-
teristics and run on the TIMIT sentences. The HMM output was
decoded to segment the signal into stops and non-stops. Each
closure-burst transition was considered to be correctly detected
if it fell anywherewithin a segment postulated as a stop by the
HMM. This is a concession to the fact that the HMM is not de-
signed to specifically locate the closure-burst transition.

5. The procedure outlined above can be extended to detection of
other phonetic events, as well as to improve stop detection. From
an algorithmic point of view what is needed for each such exten-
sion is a choice of representation, a choice of the operatorh; and
a decision rule. We are currently investigating other broad class
transitions, e.g., fricative-vowel and vowel-nasal. As our models
become more complicated, more parameters will be required and
some method of capacity control will be required.

Let us examine more closely the nature of the errors made by the
detector in C.

3.1. Errors by Speakers

Recall that there are 32 speakers in directory 4 of the TIMIT
database. Here we examine how the stop detector performs on
each of these speakers. We look at a few cases of bad perfor-
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Figure 3: False acceptance and rejection rates by speaker.
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Figure 4: Sentence (top) and detector output (bottom) for speaker
on whom performance is poor

mance to get some insight into the nature of these cases. Fig. 3
shows the acceptance and rejection rates for each of the 32 speak-
ers (using algorithm C) for a point (18 % false rejection) on the
ROC curve of fig. 2.

Notice that there are some speakers for which the performance of
the current detection algorithm is quite poor. It turns out that each
of the speakers with high false acceptance rates was male with
low pitch and occasionaly creaky voice with considerable glot-
talization. False firings of the stop detector often occured at the
pitch pulses. Fig. 4 shows the output of the stop detector (before
thresholding) on a sentence on which performance is particularly
bad. Speakers with high false rejection rates typically had many
poorly articulated stops. Fig. 5 shows the portion of a sentence
corresponding to the stop “p”. Notice how the stop is very poorly
articulated leading to poor detector performance. These two fig-
ures demonstrate some of the typical problems that are encoun-
tered with the current stop detection algorithms.
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Figure 5: The stop “p” (top) and detector output (bottom) for
speaker on whom performance is poor.

3.2. Errors by Phonetic Class

Here we examine the detections/insertions to get a sense of how
often they occur during different phonetic events in the speech
signal. For convenience, we pick a particular point on the ROC
curve of detection algorithm C with false rejection of 23 percent
and false acceptance of 5 percent. For each point in time that was
marked as a closure-burst transition by the stop detector, we lo-
cated the closest true phonetic boundary (provided by the manual
TIMIT segmentation) and noted the phonetic identity to the left
and right of that boundary. Figs. 6-7 show the number of false
insertions for each phonetic class (left and right). The TIMIT no-
tation has been used for the phonemes. One notices some false
inserts occuring during closures and releases of stops. These cor-
respond to firings of the detector that are more than 20 ms away
from the closure-transitionboundary. Excluding these, the most
common left contexts are “q” (glottal stop); “h#” (silence; pre-
sumably preceding the sentence); “pau” (pause); “n” (presumably
due to the nasal closure); “th” (dental fricative; this has a par-
tial closure and broadband nature). The most common right con-
texts are “q”; “ch”; “jh”(affricates having some stop like proper-
ties); “s” (strident fricative); “ae”; ix” (all vowels; presumably
preceded by glottalization or silence or having noticeable pitch
pulses). Most of these errors are not unreasonable and ways to
eliminate them have to be considered.

4. CONCLUSIONS

We have considered the problem of detecting stop consonants in
continuous speech. We have utilized a simple representation us-
ing log-energies and Wiener entropy to characterize the speech
signal. Stops correspond to certain characteristic transitions in
this feature space and we show how to use a filtering framework
to extract the stops with reasonable accuracy and verylittle train-
ing data.

Many phonetic events, particularly those characterized by transi-
tions, e.g. broad class boundaries, nasals etc. can be handled by
a similar approach. While we have utilized a simple linear filter
to extract the stop, one can, in principle, use more complex non-
linear filters to extract such phonetic events. Finally, the output of
the filters can be interpreted as aa-posterioridensity for the event
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Figure 6: False insertions, left phonemic context.
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Figure 7: False insertions, right phonemic context.

and might be useful as an intermediate representation for other
speech recognition and segmentation tasks.
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