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ABSTRACT 8000

We consider the problem of detecting stop consonants in contin
ously spoken speech. We pose the problem as one of finding t 2000
optimal filter (linear or non-linear) that operates on a particula 600
appropriately chosen representation. We discuss the performar %

of several variants of a canonical stop detector and consider ZDW
implications for human and machine speech redtimgm or )

L L L I L L L L L
650 700 750 800 850 900 950 1000 1050

1 . I N T RO D U CTl O N %0 0 70 750 0 850 900 950 1000 1050
We are exploring a framework for speech recitign that utilizes gl )
the notion of distinctive features. An important problem that ha 0s- ]
to be solved for the success of such an approach is the accur 0
and robust detection of phonetic events. The acoustic cues 1 W0 0 70 70 80 80 %0 S0 100 1050

the different phonetic events are distributed non-homogeneously

in the time-frequency plane, so separate detectors will be coRigure 1: Portion of the speech waveforsfn),(top panel), the
structed for each of them. This is in contrast to approaches thassociated three-dimensional feature veetor,) (middle panel),
use the same representation for all sound classes without spe@at the desired outpui(») bottom panel marking the times of
attention to their particular attributes. In this paper, we focus othe closure-burst transition.

the problem of detecting stop consonants in continuous speech.

Stops present a challenging case because of their highly transient

acoustic characteristics. Progress on this problem will be useffll e show that in the above approach most of the false nega-

for speech recogtion as well as automatic sgch segmentation. tives are due_to poorly released stops; many of the false pos_ltlves

Some aspects of this work that we would like to highlight are:  €an l:_)e explained as glottal stops or clo_sures followed by strident
fricatives (these are perceptually often like stops).

a) the signature of a stop consonant is a closure followed by a ) .

sharp release of broadband energy, especially at high frequencigshile detailed results are presented for the case of stops, our

We therefore represent a stop by its spectrum and its Wiener giRProach can be utilized to detect other kindplénetic events

tropy that provides a measure of spectral flatness to character®Well, and we will comment on these in the paper.

the broadband nature of the burst. All spectra have been computed

using multi-tapered spectral nietds [5]. 2. THE STOP DETECTION PROBLEM

b) We propose to solve the problem of stop detection by construceop consonants are produced by causing a complete closure of
ing an optimal filter that operates on the above representation suél¢ vocal tract followed by a sudden release. Hence they are
that the output is high when there is a stop and low otherwise. Préignalled in continuous speech by a period of extremely low
vious attempts at stop detection have typically attempted to tal@@ergy (corresponding to the period of closure) followed by a
derivatives in appropriately chosen energy bands [2]. While thigharp, broad band signal (corresponding to the release). As a re-
is intuitively a reasonable thing to do, differential operators argult, stops consonants are highly transient (dynamic) sounds that
not necessarily optimal for stop detection. The filter derived bjiave a varying duration lasting anywhere from 5 to 100 ms. In
our method depends on the optimality criterion chosen. We confimerican English, the class of stops consists of the soynds
pare the performance of several optimal filters with that of th&:t.k,b,d.g.

differential operator, and show significantimprovement. . ) .
In order to build a detector for stop consonantsin running speech,

¢) We obtain ROC curves for the stop detection problem on th&€ speech signak(t), is characterized by a vector time series
multi-speaker TIMIT database. When the correct detection rat&4th three dimensions — (i) log(total Energy) (i) log(Energy
range from 70 to 90 percent, the insertion rates range from 5 fpove 3kHz) (i) spectral flatness measure based on Wiener En-
20 percent. (equal error rate — 16 percent). This is shown 0Py defined ag log(S(f, t))df — log( { S(f,t)df). All quan-

be reasonably competitive with traditional HMM basedeets. tities are computed using 5 ms windows moved every 1 ms. Mul-
Crucially, however, our filtering framework requires 33 parametitapered estimates [5] are computed for the spectra from which
ters trained from 4 speakers — a vast reduction in the number 8fergies and Wiener entropy are then calculated. Thus, we have

parameters and consequently the amount of training data. ~ X(n) = [z1(n) #2(n) zs(n)]" wheren represents time (dis-
cretized in units of milliseands) andz, throughszs are the three



acoustic quantities that are measured every 1 ms. Energies at 1 differences of energy at successive times) corresponds to a partic-

intervals potentially allow us to track rapid transitions that wouldilar choice of the linear filtek.

otherwise be smoothed out by a coarser temporal resolution. This

is particularly important since previous studies (e.g. [4]) indicat@- The functionw*) (n) serves to weight the data so that parts of

that burst durations for voiced stops could be as short as a fdie signal near a stop transition (but not exactly at t) are not taken

milliseconds. The Wiener entropy based flatness measure can bé0 consideration — it acts as a “don’t care” region because it is

interpreted as a Kullback-Liebler divergence betwséyi, t) and ~ not completely clear what a desirable output is near a transition.

aflat spectrum. It is also related to the predictability of the procedsurther, from a numerical point of view, this allows the output

(). yﬁf) some time to move smoothly from 0 to 1 and back again to
0 at the stops. In our experiments, the valudidfwas set at 6,

We need to find an operator on the feature vector time series thas., a don't care region was effective from 5 ms before to 5 ms

will return a single dimensional time series that takes on large vafter a closure-burst transition. An optimal choicé/Bfwas not

ues around the times that stops occur and small values otherwiggempted.

The most natural points in time that mark the presence of stops

are the transition from closure to burst release. Shown in fig. 3. In our experiments, we sét(m) to be zero iffm| > 6. Thus

is an example of a speech wavefosm), the associated feature there were{3 = 3 x 11) free parameters for the filter that were

vector time series(n) and a desired outpyi(n). The technical then optimally learned from the training data in the manner de-

goalis to find an operatdr on the time serieg(n) that produces scribed. On a test sentence, stops were detected by thresholding

an outputy,(n) = hox(n) suchthat| y — y» || is smallin some the outpuly, obtained by filtering the feature vectomwith 4.

sense (norm). Specifically, we choose the optimal ope(atam

some clas${ of operators) according to the criterion 3. EXPERIMENTAL RESULTS

We present results of several stop detection algorithms on the

hope = arg min R(h) = arg min E[(y — yn)’] (1) TIMIT database. All results are presented on dialect region 4 of
heH heH . .

the test set containing 32 speakers, 16 male and 16 female saying
ten sentences each, rédg in a total of 320 sentences. At ev-
ery point in time (ms), the detection algorithm could potentially
postulate the existence of a stop — clearly, as in any detection
problem, one will need to balance the false acceptance rate (per-
centage of false detects, i.e., insertions) against the false rejection
rate (percentage of stops not detected). As one varies the thresh-
In this paper, we consider only linear convolution operator§!d for acceptance, corresponding ROC curves are generated and

hox = h * x. In actual practice, we deviate from the formu-Shownin fig. 2.
lation of egn. 1 since we don't have access to the true distributi

it is easy to show that this is equivalent to approximatinggpy
the conditional density time serigén) = E[{y(n)}|{x(n)}] =
P(y(n) = 1|{x(n)}) for the case whe(n) takes values in
{0,1}. Thusp(n) is the conditional probability of a stop at time
n given the time seriefx(n)}.

that generates the time serigs(n), y(n)} and so cannot com- Qﬂ1e overall conclusion from these experiments is thatit is possible
ute%(h) We actually a roximaitgtjﬂ(h) by an empirical risk to attain an equal error rate of about 16 % on TIMIT speakers with
P : y app y P a 33 parameter linear filter. It is possible to improve this to 12 %

Remp(h) computed from labelled examples (training data) glverl\)y moving to a non-linear filter with capacity control but we do

by: not describe those results here.
N Ny A. This takes energy differences. The specific operation is given
2
Remp(h) = ZZ w(k)(n)(y(k)(n) _ y(hk)(n))2 by yr = lel(xl(n) —zi(n —1)).
k=1 n=1

B. Taking optimized differences but only on energy components

Here, N is the number of sentences in the training set. Each sefif X- Thusy = i 2 ?i(])h"(" - J) bUt the values of
tence corresponds to a particular realization of the prooegg ~ i(m)'s are now chosen optimally by minimizirg.,..,,(k) con-
and N}, is the length of theith sentence. Let theth sentence in  Structed appropriately.

the training set have:; stops with corresponding closure-burst
transitions occuring at timesx; (I € {1, ..., mx}) respectively.
Theny'*)(n) is 0 everywhere except for valuesof= nx; where

it takes the value. The weighting functionyw'*) (n), is also0—1-
valued withw'*)(n) = 1 everywhere exceptfar < |n — ny| <

W where it takes the value. Finally, the kth filtered output,

C. Taking optimized differences with all three components of the
vectorx, i.e., the two energy components and the Wiener entropy.
Thisis the complete formulation described in the previous section.

Some further points need to be made here:

Y (n), is given byy! (n) = S°0_, > o (n = )hi(y). 1. In order to go from the outpy, to a set of candidate times
] . where stops are postulated, we need a decision rule. An appropri-
Some remarks are in order: ate one to use is to threshalg and pick peaks after thresholding.

Each candidate peak, was considered to be a correct detection

1. This is an optimal filter design problem whose solution cag .-« ithin 20 ms of the TIMIT labelling of the closure-burst

b_e solved by ?‘dap“"e means using Recursive Le_ast Squares tetﬁ\’!%hsition, else it was considered to be a false insert.
niques. The filter can be trained from data to optimally match the

desired outpuy. Taking derivatives of energy (correspondingly
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Figure 2: ROC curves for detection of stop consonants using Figure 3: False acceptance and rejection rates by speaker.
three different algorithms.
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2. Since there are only 33 parameters in the full-scale linear filte
the optimal parameters can be derived from very few training dat
Specifically, in this case, we selected 4 speakers at random
male and 2 female) from the TIMIT training data base with 1C
sentences from each, making a total of 40 sentences on which t
detectors were trained.
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3. Researchers have considered the problem of detecting phone
events in running speech [1, 2, 3]. Unfortunately, they have nc
published ROC curves, nor compared their performance to oth
methods. 051 |

4. The '*" shown in the plot corresponds to the performance c
a full blown HMM (32 mixtures; 3 state left-to-right models; 47 s ,
phonemes; free grammar; 450,000 parameters). The HMM wi
trained on an extremely data base with similar acoustic chara 5(;0 10‘00 15‘00 2(;00 25‘00 30‘00 35‘00 4000
teristics and run on the TIMIT sentences. The HMM output was fime (9

decoded to segment the signal into stops and non-stops. Eaﬁh

closure-burst transition was considered to be correctly detectedP""© 4: Sentence (top) and detector output (bottom) for speaker

if it fell anywherewithin a segment postulated as a stop by the" whom performance is poor

HMM. This is a concession to the fact that the HMM is not de-
signed to specifically locate the closure-burst transition.

mance to get some insight into the nature of these cases. Fig. 3
5. The procedure outlined above can be extended to detectionsifows the acceptance and rejection rates for each of the 32 speak-
other phonetic events, as well as to improve stop detection. Fro@tis (using algorithm C) for a point (18 % false rejection) on the
an algorithmic point of view what is needed for each such exterROC curve of fig. 2.
sion is a choice of representation, a choice of the opefgtand
a decision rule. We are currently investigating other broad clad¥otice that there are some speakers for which the performance of
transitions, e.g., fricative-vowel and vowel-nasal. As our modei§1€ current detection algorithm is quite poor. It turns out that each
become more complicated, more parameters will be required aRéithe speakers with high false acceptance rates was male with
some method of capacity control will be required. low pitch and occasionaly creaky voice with considerable glot-
talization. False firings of the stop detector often occured at the
Let us examine more closely the nature of the errors made by tipéch pulses. Fig. 4 shows the output of the stop detector (before

detector in C. thresholding) on a sentence on which performance is particularly
bad. Speakers with high false rejection rates typically had many
3.1. Errors by Speakers poorly articulated stops. Fig. 5 shows the portion of a sentence

corresponding to the stop “p”. Notice how the stop is very poorly
Recall that there are 32 speakers in directory 4 of the TIMITarticulated leading to poor detector performance. These two fig-
database. Here we examine how the stop detector performs ores demonstrate some of the typical problems that are encoun-
each of these speakers. We look at a few cases of bad perftered with the current stop detection algorithms.
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Figure 5: The stop “p” (top) and detector output (bottom) for
speaker on whom performance is poor.
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3.2. Errors by Phonetic Class

160 - q

Here we examine the detections/insertions to get a sense of h
often they occur during different phonetic events in the speec b
signal. For convenience, we pick a particular point on the ROt o
curve of detection algorithm C with false rejection of 23 percen bl 4

140

i q
and false acceptance of 5 percent. For each point in time that w,, 10 i: TR | i | TR |
marked as a closure-burst transition by the stop detector, we |5 e | | IR i N
cated the closest true phonetic boundary (provided by the manus o[ 1 % kel a1y a1l 11]yi el | eff aal ahf o u it ! pabok |

2 !

TIMIT segmentation) and noted the phonetic itignto the left ¢
and right of that boundary. Figs. 6-7 show the number of fals~ sof
insertions for each phonetic class (left and right). The TIMIT no

tation has been used for the phonemes. One notices some fe¢  #°
inserts occuring during closures and releases of stops. These ¢
respond to firings of the detector that are more than 20 ms aw:
from the closure-transitioboundary. Excluding these, the most

\‘\u‘u‘\‘uuu“‘\u
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‘Hu‘u‘\‘uuu“‘u\
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common left contexts are “q” (glottal stop); “h#” (silence; pre- 0 10 20 30 40 50 60
sumably preceding the sentence); “pau” (pause); “n” (presumably _ _ _ _ _
due to the nasal closure); “th” (dental fricative; this has a par- Figure 7: False insertions, right phonemic context.

tial closure and broadband nature). The most common right con-

texts are “q”; “ch”; “jh”(affricates having some stop like proper- and might be useful as an intermediate representation for other
ties); “s” (Strident fricative); “ae"; ix” (a" VOWeIS; pl’esumably speech recog‘ﬁon and segmentation tasksl
preceded by glottalization or silence or having noticeable pitch

pulses). Most of these errors are not unreasonable and ways to 5. REFERENCES
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