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ABSTRACT 2. RELATED RESEARCH

Current spoken dialogue systems lack positive feedback such Backchannels are short utterances, such as ‘uh-huh' and “yeah'
backchannels, which are common in human-human conversa-English and “hai' and “ee' in Japanese, produced by a hearer
tions. To develop more natural human-computer interfaces, thkiring a speaker's speech. They are produced not at random but at
investigation of backchannel-responses are indispensable. In thigir appropriate timing. Many researchers have tried to speculate
paper, we propose a method for detecting the precise timing fabout the factors which determine the timing of backchannels.
backchannel responses in Japanese and aim at incorporating such
method in future spoken dialogue systems. The proposed methd@ynard [5] mentioned that in Japanese conversations, a speaker
is based on machine learning technique with a variety of prosodfiften provides cues for inducing backchannels from a hearer at
features. Itis shown to be effective in automatically deriving ruler around the ends of pause-bounded phrases. She suggested as
for detecting the contexts of backchannels. The performance lgiical cues sentence final and interjectory particles, e.g., ‘ne’in
our method is considerably better than previous methods. Japanese, followed by a pause. Other researchers also suggested
prosodic cues such as rise-fall intonation [2].

1. INTRODUCTION Several speech engineers have been working on prosody-based
Many researchers have reported that people hesitate to talk Wﬂﬁ:‘ecthr} of thr?. (r:]onttetxt o:hbftck(;]hannels.h Vl\ijard [8] rzpor_tﬁd
spoken dialogue systems due to the lack of positivefeedbackfro?n eunstics which states that a nearer should respond with a

the systems such as backchannels, which are common in humfﬁCkChannEI when a low pitch region in a speaker's speech lasted

human conversations [3, 6]. To develop more natural humal c_)nggor/thar:j 150 MSec. W'ftgg;/'s thli”tSt'CSt' hle a6ch|eveq[ %rglci”
computer interfaces, the investigation of backchannel-respon g ° and a precision o o ato et al. [6] reported tha
ere are specific pitch patterns in the region of 200 to 400 msec

mechanisms are indispensable. In this paper, we propose, a .
method for detecting the precise timing for backchannel responsg fore backchannels. They simulated backchannel responses by

in Japanese and aim at incorporating such method in future s %_emplate-matching technique, achieving a recall of 77% and a
isi 0,
ken dialogue systems. precision of 33%.

In the proposed method, the contexts for backchannels are c’qulowing Maynard [5] and Okato et al.'s [6] observations, we uti-

tected by using only prosodic features such as fundamental frize prosodic features around the ends of pause-bounded phrases.

guency and energy, which are relatively easy to handle by current

speech technology. In contrast to the existing methods, which 3. CORPUS

use very limited number of features and hand-made heuristics, we ) ) ]

employ a machine learning method with a variety of prosodic feal "€ SPoken dialogue corpus used in this study was collected at

tures which might be relevant to the detection of the backchannbjgra Institute of Science and Technology (hereafter, NAIST) un-

context. It will be shown that our method is effective in automatider the following conditions:

cally deriving rules for detecting the contexts of backchannels and . .

that it performs considerably better than previous methods. « face-to-face dyadic conversations

e free talk on the topic chosen by the subjects from among the

In Section 2, we review related works on backchannels in  pre-determined list

Japanese conversatio_n and automati_c detection of thg timing fory recorded in a soundproof room

backchannels. In Section 3, we describe the spoken dialogue cor- .

pus used in our study and provide our definition of backchannels, ® N partition between the speakers

In Section 4, we conduct a psychological experiment in order to e using headset type microphones (but without headphones)

categorize positive and negative contexts for backchannels whiche separate channel for each speaker and sampled in high qual-

are common to average humans. In Section 5, we obtain, by us- ity at a rate of 20kHz

ing decision tree learning method, prosodic cues which best dis-

criminate the positive and negative contexts for backchannels. We transcribed total of 40 minutes dialogues by 3 different pairs

Section 6, we summarize the paper. of subjects. Speech materials were divided into pause-bounded
phrases delimited by pauses longer than 100 msec, yielding 1875
such phrases.



Original (Japanese) Translation (English)
L: ya mata gottui / sugoi sensyuyan he would be a very / great player, wouldn't he?
R: utuno is he a good hitter?
L: ya sodatikatatokani yotte wakarankedo-/ kankyootokani ygtterell, it depends on his breeding / on his surroundings
R: aa uh-huh
L: kedo sondakeno sainoowa arutte yuunga- aruyan but he would have a talent for that, don't you think so?

Figure 1: Excerpt from the corpus with translation into English on the right column. "L and "R’ identify speakers. Each line
corresponds to a conversational move and a /' indicates a boundary between phrases. Backchannels are in boldface.

We labeled backchannels in the corpus based on their forms afd2. Method

functions. Expressions such as “hai,' “ee,' and “un' in Japanese

were judged to be backchannels unless they constituted conv8ubjects 18 graduate students of NAIST, all native speakers of
sational moves such as an answer to a yes-no question [1]. \#@panese (9 males and 9 females).

found total of 144 backchannels in the corpus.
Materials We selected, from the corpus, 176 stimuli, each of

Figure 1 shows an excerpt from the corpus with an example a¥hich consists of several pause-bounded phrases and constitutes
backchannels. a single conversational move [1]. We excluded those cases that
had difficulty in understanding or listening, was too short to re-
4. CATEGORIZING CONTEXTS FOR spond, or contained only one pause-bounded phrase. Note that, by
our definition of backchannels, only responses to move-internal
BACKCHANNELS pause-bounded phrases are considered to be backchannels.

4.1. Goal The average number of pause-bounded phrases contained in a
stimulus was 2.91 (= 512/176).

As mentioned in Section 1, we aim at identifying the features of

contexts for backchannels using decision tree learning methodrocedure The subject was asked to respond by hitting the

This method requires training data of both negative and positiv&ace bar whenever he or she thought it appropriate to respond

instances. When collecting these training data from the spoka¥ith a backchannel while listening to a stimulus. Each pause-

dia|ogue corpus, the f0||owing pr0b|ems arise: bounded phrase within a stimulus was JUdQEd to be followed by
a backchannel if the subject had responded within 500 msec after

1. It is not appropriate to consider as positive casglg those the end of that phrase.

contexts where backchannels are found in the corpus. ) ) o ) )
Each subject was given 88 stimuli at random order without dis-

2. It is not appropriate to consider as positive caséshose  course contexts. Each stimulus was used for 9 subjects.
contexts where backchannels are found in the corpus.

3. It is necessary to consider as negative casesr contexts 4.3. Results
thanthose where backchannels are not found in the corpus.

For each pause-bounded phrase, we counted the number of sub-
Problems 1 and 2 Backchannels are considered as optional rejects who responded to that phrase. Then, we also classified the
sponses [5]; in fact, the frequency of backchannels found in oyhrases according to the number of the responding subjects.
corpus varies from speaker to speaker. One person may not re-
spond with a backchannel at the place where another person ddeigure 2 shows the histogram of the phrases classified by the num-
and vice versa. Thus, the spoken dialogue corpus may not cdger of the responding subjects. In order to clarify the deviation
tain all backchannels that might have occurred, or it may contaiiiom the random distribution, the figure shows the difference from
some backchannels that should not have occurred. Using only alfi¢ binomial distribution with a mean of 3.1, which is the average
all those contexts identified in the corpus as positive cases woulimber of subjects responding to one phrase.

result in very low recall and low precision. ) ]
From Figure 2, we can see the following:

Problem 3 Decision tree learning method needs not only posi- _

tive cases, but also negative cases. One simple way to make negt- There are more phrases than expected to which none or only
ative cases is to collect cases in the corpus where backchannels one subject responded. (Group A)

did not appear. This, however, is not adequate because of the 0P There are more phrases than expected to which more than 5
tionality of backchannels; one person may respond when another subjects responded. (Group C)

person may not. Therefore, using these negative cases for learning
would result in very low precision. 3. There are less phrases than expected to which 2 to 5 subjects

responded. (Group B)
Considering the above, we do not directly use the contexts found
in the corpus. Rather, we identify the contexts where pecmte-  Thus, we can conclude that there are both contexts where people
monlyrespond with backchannels andmmonlydo not. To do commonly respond with backchannels, nampbsitivecontexts,
this, we conducted a psychological experiment in which subjectnd those where people commonly do not, nanmedgativecon-
were requested to respond, by hitting keys, to the speech materitdgts. We obtained 106 cases for the positive contexts and 98
at the timing of backchannels. cases for the negative contexts, leaving 132 cases as unclassified,
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Figure 2: Distribution of pause-bounded phrases classified by Figure 3: Prosodic features used for learning.

the number of responding subjects (difference from binomial dis-
tribution). The y-axis represents the number of phrases falling
within each class on the x-axis. Theth class is composed of the A
phrases to which subjects responded.

Prosodic Features

Several researchers noted that syntactic features as well as

prosodic features can be used as cues for detecting the context
neutral contexts. The first two groups will be used for a machinf" Packchannels [2, 5]. We, however, do not use either lexi-
learning method described in Section 5 cal features (e.g., ‘ne' as sentence final or interjectory particles)

or syntactic features (e.g., termination of grammatical clauses),

As a matter of course, these contexts chosen above may not #Bce they require speech recognition and parsing. We use only
the same as the contexts found in the corpus because of the diffafosodic features, which can be extracted without extensive labor.
ence between experimental and conversational situations, of the

different roles of the subjects as a third party and the participat€ utilize prosodic features such as entire duration of pause-

of a dialogue, and of the accessibility to the discourse context@ounded phrases, peak levels and gradients of fundamental fre-
Therefore, we call those backchannels obtained by the experim&iency (FO) and energy, and their temporal changes. As sug-

BLRs (backchannel-like responses) and temporarily distinguis?neSted by Maynard [5]_, in Japanese conversations, backchannels
them from real backchannels. requently appear during pause. Thus, we concentrate on the

above prosodic features in the region of 500 msec before the end

4.4. Comparison with Backchannels in the ©°fPause-bounded phrases.

Corpus 5.2. Feature Extraction

Since BLRs are not necessarily the same as real backchannelgsiftly, for each pause-bounded phrase in the training data, we
would be important to examine whether or not they are quite difsyracted FO and energy by using ESPS/Waves+ software. Sec-
fe_rent from backchannels in the corpus. If BLRs were completeandW‘ we approximated the final 500 msec region of the phrase
fjlﬁerent from real backchannels, the proposed method for detegy a cubic curve using least squares method. Thirdly, we obtained
ing the context of backchannel responses would not work well fafe coordinates of three vertices of the curve, which appear inside
real world dialogues. the 500 msec region, and other relevant parameters shown in Fig-

. ure 2. In addition to the parameters in Figure 2, we also used
To see the difference between BLRs and real backchannels, \.Q’/?/SO (= 10), s1 — 50 (= 1), and full length, which is the

cqur_ned the number of backchannels f(_)und in the corpus fa."'n&wtire duration of the phrase. The calculation was also repeated
within each group of BLRs. The positive group (group A) in- ith energy

cluded 33 cases of real backchannels (76.7%), the neutral group '

(group B) 8 cases (18.6%), and the negative group (group C)é .

cases (4.7%), respectively. Thus, we can say that BLRs are not 03' Obtained Rules
different from real backchannels but, rather, they are quite simila§

Therefore, there seems no reason to distinguish BLRs from re y using 0_4'5 deusmn_tree software_ [7], we obtained rules for
iscriminating the positive and negative contexts for backchan-

nels. Table 1 shows the rules and their coverage and accuracy.
These rules are tested sequentially from the top to the bottom; the

5. DETECTING THE CONTEXT OF rule #0 at the bottom is the default rule, which is applied when no
BACKCHANNELS previous rules have been fired.

backchannels.

In this section, we identify prosodic features which best discrimThe intuitive interpretation of these rules can be summarized as
inate the two groups of contexts, positive and negative contextgllows:

of backchannels, that have been categorized in the previous sec-

tion. We perform decision tree machine learning method to auto- e The rules for the positive contexts (#15 and #13) indicate

matically obtain rules for discrimination, and evaluate the perfor-  that rise or rise-fall intonation at the end of pause-bounded

mance on our spoken dialogue corpus. phrases tend to be followed by backchannels. These rules



| #] Rule | Decision| Coverage| Accuracy | | | = "| r— |
ecal recision
22pg < 376 msec -
2 | w2pg > —73.71 Hz negative| 255% | 98.1% Positive contexts 77.6% 69.7%
fulllength < 724 msec Negative contexty 68.9% 76.8%
y0Fo > 105.2Hz . .. . .
14 SOcnergy < —A0.41 negative 11.8% 91.7% Table 2: Recalls and precisions for cross-validation.
y0po > 105.2 Hz
Oro < 05712 6. CONCLUSION
15 | Sull ength < 724 msec| POSIIVE | 4% 100%
wOmn < ?UB 2 Hy In this paper, we proposed a new method for detecting the context
t"o 5“ < 70' A;Tz? for backchannel responses by using only prosodic features. In this
13 f’ubl? lengt }; > 794 msec positive 26.9% 90.6% method, prosodic features are extracted and processed by machine
— — pre 5 3 learning algorithm to obtain rules for detecting the contexts of
1| w2po > 73.71Hz | positive 4.9% | 70.0% " hg gl o ) | h‘gh o
0 positve 7 0% S45% backchannels. We achieved a considerably high accuracy in the

evaluation on our spoken dialogue corpus. In the future work, we

Table 1: Obtained rules and their coverage and accuracy. The p#ish to carry out further research with bigger corpus.

rameters in the rules correspond to those in Figure 3. Parameters
for FO and energy are distinguished by the subscripts.

We
cover 31.8% of the training data, and the accuracy is OV&pp
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e The default rule is “respond with backchannels,” which,
however, results in very low accuracy (about 50%). 2.

These results partly support the heuristics used in the previous
studies. Our research, however, is beyond them in that the rule3.
are derived from the data, which are expected to capture the es-
sentials of the phenomena in more depth, and in that they show
the significance of negative contexts, i.e., inhibitory cues for

backchannels, which have not been discussed in detail so far. 4

The low accuracy of the default rule suggests the lack of sufficient
negative cues among other reasons. We should try other kinds of

features in the future study.
5.

5.4. Evaluation of the Performance

We evaluated the performance of the proposed method by using.
cross-validation. Table 3 shows the recalls and precisions of the
positive and negative cases. The recall and precision of the pos-
itive contexts are 77.6% and 69.7%, respectively; the recall and
precision of the negative contexts are 68.9% and 76.8%, respec-
tively. The overall error rate is 27.0% on the average. 7

Since we used pre-delimited pause-bounded phrases as data, our
result is not directly comparable to those of Ward (recall: 53%,8.
precision: 33%) and Okato et al. (recall: 77%, precision: 33%).
However, the proposed method is original and very promising.

Recently, Koiso et al. [4] reported an error rate of 18.2% for the
inside data using decision tree with prosodic features. Although
they do not provide the results for the outside data and their re-
search goal is quite different from ours, we believe that their re-
sults also encourage the approach outlined in this paper.
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