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ABSTRACT

Current spoken dialogue systems lack positive feedback such as
backchannels, which are common in human-human conversa-
tions. To develop more natural human-computer interfaces, the
investigation of backchannel-responses are indispensable. In this
paper, we propose a method for detecting the precise timing for
backchannel responses in Japanese and aim at incorporating such
method in future spoken dialogue systems. The proposed method
is based on machine learning technique with a variety of prosodic
features. It is shown to be effective in automatically deriving rules
for detecting the contexts of backchannels. The performance of
our method is considerably better than previous methods.

1. INTRODUCTION

Many researchers have reported that people hesitate to talk with
spoken dialogue systems due to the lack of positive feedback from
the systems such as backchannels, which are common in human-
human conversations [3, 6]. To develop more natural human-
computer interfaces, the investigation of backchannel-response
mechanisms are indispensable. In this paper, we propose a
method for detecting the precise timing for backchannel responses
in Japanese and aim at incorporating such method in future spo-
ken dialogue systems.

In the proposed method, the contexts for backchannels are de-
tected by using only prosodic features such as fundamental fre-
quency and energy, which are relatively easy to handle by current
speech technology. In contrast to the existing methods, which
use very limited number of features and hand-made heuristics, we
employ a machine learning method with a variety of prosodic fea-
tures which might be relevant to the detection of the backchannel
context. It will be shown that our method is effective in automati-
cally deriving rules for detecting the contexts of backchannels and
that it performs considerably better than previous methods.

In Section 2, we review related works on backchannels in
Japanese conversation and automatic detection of the timing for
backchannels. In Section 3, we describe the spoken dialogue cor-
pus used in our study and provide our definition of backchannels.
In Section 4, we conduct a psychological experiment in order to
categorize positive and negative contexts for backchannels which
are common to average humans. In Section 5, we obtain, by us-
ing decision tree learning method, prosodic cues which best dis-
criminate the positive and negative contexts for backchannels. In
Section 6, we summarize the paper.

2. RELATED RESEARCH

Backchannels are short utterances, such as `uh-huh' and `yeah'
in English and `hai' and `ee' in Japanese, produced by a hearer
during a speaker's speech. They are produced not at random but at
their appropriate timing. Many researchers have tried to speculate
about the factors which determine the timing of backchannels.

Maynard [5] mentioned that in Japanese conversations, a speaker
often provides cues for inducing backchannels from a hearer at
or around the ends of pause-bounded phrases. She suggested as
lexical cues sentence final and interjectory particles, e.g., `ne' in
Japanese, followed by a pause. Other researchers also suggested
prosodic cues such as rise-fall intonation [2].

Several speech engineers have been working on prosody-based
detection of the context of backchannels. Ward [8] reported
a heuristics which states that a hearer should respond with a
backchannel when a low pitch region in a speaker's speech lasted
longer than 150 msec. With this heuristics, he achieved a recall
of 53% and a precision of 33%. Okato et al. [6] reported that
there are specific pitch patterns in the region of 200 to 400 msec
before backchannels. They simulated backchannel responses by
a template-matching technique, achieving a recall of 77% and a
precision of 33%.

Following Maynard [5] and Okato et al.'s [6] observations, we uti-
lize prosodic features around the ends of pause-bounded phrases.

3. CORPUS

The spoken dialogue corpus used in this study was collected at
Nara Institute of Science and Technology (hereafter, NAIST) un-
der the following conditions:

� face-to-face dyadic conversations

� free talk on the topic chosen by the subjects from among the
pre-determined list

� recorded in a soundproof room

� no partition between the speakers

� using headset type microphones (but without headphones)

� separate channel for each speaker and sampled in high qual-
ity at a rate of 20kHz

We transcribed total of 40 minutes dialogues by 3 different pairs
of subjects. Speech materials were divided into pause-bounded
phrases delimited by pauses longer than 100 msec, yielding 1875
such phrases.



Original (Japanese) Translation (English)
L: ya mata gottui / sugoi sensyuyan he would be a very / great player, wouldn't he?
R: utuno is he a good hitter?
L: ya sodatikatatokani yotte wakarankedo- / kankyootokani yotte-well, it depends on his breeding / on his surroundings
R: aa uh-huh
L: kedo sondakeno sainoowa arutte yuunga- aruyan but he would have a talent for that, don't you think so?

Figure 1: Excerpt from the corpus with translation into English on the right column. `L' and `R' identify speakers. Each line
corresponds to a conversational move and a `/' indicates a boundary between phrases. Backchannels are in boldface.

We labeled backchannels in the corpus based on their forms and
functions. Expressions such as `hai,' `ee,' and `un' in Japanese
were judged to be backchannels unless they constituted conver-
sational moves such as an answer to a yes-no question [1]. We
found total of 144 backchannels in the corpus.

Figure 1 shows an excerpt from the corpus with an example of
backchannels.

4. CATEGORIZING CONTEXTS FOR
BACKCHANNELS

4.1. Goal

As mentioned in Section 1, we aim at identifying the features of
contexts for backchannels using decision tree learning method.
This method requires training data of both negative and positive
instances. When collecting these training data from the spoken
dialogue corpus, the following problems arise:

1. It is not appropriate to consider as positive casesonly those
contexts where backchannels are found in the corpus.

2. It is not appropriate to consider as positive casesall those
contexts where backchannels are found in the corpus.

3. It is necessary to consider as negative casesother contexts
thanthose where backchannels are not found in the corpus.

Problems 1 and 2 Backchannels are considered as optional re-
sponses [5]; in fact, the frequency of backchannels found in our
corpus varies from speaker to speaker. One person may not re-
spond with a backchannel at the place where another person does,
and vice versa. Thus, the spoken dialogue corpus may not con-
tain all backchannels that might have occurred, or it may contain
some backchannels that should not have occurred. Using only and
all those contexts identified in the corpus as positive cases would
result in very low recall and low precision.

Problem 3 Decision tree learning method needs not only posi-
tive cases, but also negative cases. One simple way to make neg-
ative cases is to collect cases in the corpus where backchannels
did not appear. This, however, is not adequate because of the op-
tionality of backchannels; one person may respond when another
person may not. Therefore, using these negative cases for learning
would result in very low precision.

Considering the above, we do not directly use the contexts found
in the corpus. Rather, we identify the contexts where peoplecom-
monlyrespond with backchannels andcommonlydo not. To do
this, we conducted a psychological experiment in which subjects
were requested to respond, by hitting keys, to the speech materials
at the timing of backchannels.

4.2. Method

Subjects 18 graduate students of NAIST, all native speakers of
Japanese (9 males and 9 females).

Materials We selected, from the corpus, 176 stimuli, each of
which consists of several pause-bounded phrases and constitutes
a single conversational move [1]. We excluded those cases that
had difficulty in understanding or listening, was too short to re-
spond, or contained only one pause-bounded phrase. Note that, by
our definition of backchannels, only responses to move-internal
pause-bounded phrases are considered to be backchannels.

The average number of pause-bounded phrases contained in a
stimulus was 2.91 (= 512/176).

Procedure The subject was asked to respond by hitting the
space bar whenever he or she thought it appropriate to respond
with a backchannel while listening to a stimulus. Each pause-
bounded phrase within a stimulus was judged to be followed by
a backchannel if the subject had responded within 500 msec after
the end of that phrase.

Each subject was given 88 stimuli at random order without dis-
course contexts. Each stimulus was used for 9 subjects.

4.3. Results

For each pause-bounded phrase, we counted the number of sub-
jects who responded to that phrase. Then, we also classified the
phrases according to the number of the responding subjects.

Figure 2 shows the histogram of the phrases classified by the num-
ber of the responding subjects. In order to clarify the deviation
from the random distribution, the figure shows the difference from
the binomial distribution with a mean of 3.1, which is the average
number of subjects responding to one phrase.

From Figure 2, we can see the following:

1. There are more phrases than expected to which none or only
one subject responded. (Group A)

2. There are more phrases than expected to which more than 5
subjects responded. (Group C)

3. There are less phrases than expected to which 2 to 5 subjects
responded. (Group B)

Thus, we can conclude that there are both contexts where people
commonly respond with backchannels, namely,positivecontexts,
and those where people commonly do not, namely,negativecon-
texts. We obtained 106 cases for the positive contexts and 98
cases for the negative contexts, leaving 132 cases as unclassified,
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Figure 2: Distribution of pause-bounded phrases classified by
the number of responding subjects (difference from binomial dis-
tribution). The y-axis represents the number of phrases falling
within each class on the x-axis. Then-th class is composed of the
phrases to whichn subjects responded.

neutral contexts. The first two groups will be used for a machine
learning method described in Section 5.

As a matter of course, these contexts chosen above may not be
the same as the contexts found in the corpus because of the differ-
ence between experimental and conversational situations, of the
different roles of the subjects as a third party and the participant
of a dialogue, and of the accessibility to the discourse contexts.
Therefore, we call those backchannels obtained by the experiment
BLRs (backchannel-like responses) and temporarily distinguish
them from real backchannels.

4.4. Comparison with Backchannels in the
Corpus

Since BLRs are not necessarily the same as real backchannels, it
would be important to examine whether or not they are quite dif-
ferent from backchannels in the corpus. If BLRs were completely
different from real backchannels, the proposed method for detect-
ing the context of backchannel responses would not work well for
real world dialogues.

To see the difference between BLRs and real backchannels, we
counted the number of backchannels found in the corpus falling
within each group of BLRs. The positive group (group A) in-
cluded 33 cases of real backchannels (76.7%), the neutral group
(group B) 8 cases (18.6%), and the negative group (group C) 2
cases (4.7%), respectively. Thus, we can say that BLRs are not so
different from real backchannels but, rather, they are quite similar.
Therefore, there seems no reason to distinguish BLRs from real
backchannels.

5. DETECTING THE CONTEXT OF
BACKCHANNELS

In this section, we identify prosodic features which best discrim-
inate the two groups of contexts, positive and negative contexts,
of backchannels, that have been categorized in the previous sec-
tion. We perform decision tree machine learning method to auto-
matically obtain rules for discrimination, and evaluate the perfor-
mance on our spoken dialogue corpus.
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Figure 3: Prosodic features used for learning.

5.1. Prosodic Features

Several researchers noted that syntactic features as well as
prosodic features can be used as cues for detecting the context
for backchannels [2, 5]. We, however, do not use either lexi-
cal features (e.g., `ne' as sentence final or interjectory particles)
or syntactic features (e.g., termination of grammatical clauses),
since they require speech recognition and parsing. We use only
prosodic features, which can be extracted without extensive labor.

We utilize prosodic features such as entire duration of pause-
bounded phrases, peak levels and gradients of fundamental fre-
quency (F0) and energy, and their temporal changes. As sug-
gested by Maynard [5], in Japanese conversations, backchannels
frequently appear during pause. Thus, we concentrate on the
above prosodic features in the region of 500 msec before the end
of pause-bounded phrases.

5.2. Feature Extraction

Firstly, for each pause-bounded phrase in the training data, we
extracted F0 and energy by using ESPS/Waves+ software. Sec-
ondly, we approximated the final 500 msec region of the phrase
by a cubic curve using least squares method. Thirdly, we obtained
the coordinates of three vertices of the curve, which appear inside
the 500 msec region, and other relevant parameters shown in Fig-
ure 2. In addition to the parameters in Figure 2, we also used
s1=s0 (= t0), s1 � s0 (= t1), andfull length, which is the
entire duration of the phrase. The calculation was also repeated
with energy.

5.3. Obtained Rules

By using C4.5 decision tree software [7], we obtained rules for
discriminating the positive and negative contexts for backchan-
nels. Table 1 shows the rules and their coverage and accuracy.
These rules are tested sequentially from the top to the bottom; the
rule #0 at the bottom is the default rule, which is applied when no
previous rules have been fired.

The intuitive interpretation of these rules can be summarized as
follows:

� The rules for the positive contexts (#15 and #13) indicate
that rise or rise-fall intonation at the end of pause-bounded
phrases tend to be followed by backchannels. These rules



# Rule Decision Coverage Accuracy

2
z2F0 � 376 msec
w2F0 > �73:71 Hz
full length � 724 msec

negative 25.5% 98.1%

14
y0F0 > 105:2Hz
s0energy � �40:41

y0F0 > 105:2 Hz
negative 11.8% 91.7%

15

t0F0 � �0:5712

s0energy > �40:41

full length � 724 msec
y0F0 � 105:2 Hz

positive 4.9% 100%

13
t0F0 > �0:4337

full length > 724 msec
positive 26.9% 90.6%

1 w2F0 > �73:71 Hz positive 4.9% 70.0%
0 positive 27.0% 54.5%

Table 1: Obtained rules and their coverage and accuracy. The pa-
rameters in the rules correspond to those in Figure 3. Parameters
for F0 and energy are distinguished by the subscripts.

cover 31.8% of the training data, and the accuracy is over
90% when they are applied. (The rule #1 is hard to interpret.)

� The rules for the negative contexts (#2 and #14) indicate that
short duration with sudden fall in loudness and flat intona-
tion at the end of pause-bounded phrases are rarely followed
by backchannels. These rules cover 37.3% of the training
data, and the accuracy is over 90% when they are applied.

� The default rule is “respond with backchannels,” which,
however, results in very low accuracy (about 50%).

These results partly support the heuristics used in the previous
studies. Our research, however, is beyond them in that the rules
are derived from the data, which are expected to capture the es-
sentials of the phenomena in more depth, and in that they show
the significance of negative contexts, i.e., inhibitory cues for
backchannels, which have not been discussed in detail so far.

The low accuracy of the default rule suggests the lack of sufficient
negative cues among other reasons. We should try other kinds of
features in the future study.

5.4. Evaluation of the Performance

We evaluated the performance of the proposed method by using
cross-validation. Table 3 shows the recalls and precisions of the
positive and negative cases. The recall and precision of the pos-
itive contexts are 77.6% and 69.7%, respectively; the recall and
precision of the negative contexts are 68.9% and 76.8%, respec-
tively. The overall error rate is 27.0% on the average.

Since we used pre-delimited pause-bounded phrases as data, our
result is not directly comparable to those of Ward (recall: 53%,
precision: 33%) and Okato et al. (recall: 77%, precision: 33%).
However, the proposed method is original and very promising.

Recently, Koiso et al. [4] reported an error rate of 18.2% for the
inside data using decision tree with prosodic features. Although
they do not provide the results for the outside data and their re-
search goal is quite different from ours, we believe that their re-
sults also encourage the approach outlined in this paper.

Recall Precision

Positive contexts 77.6% 69.7%
Negative contexts 68.9% 76.8%

Table 2: Recalls and precisions for cross-validation.

6. CONCLUSION

In this paper, we proposed a new method for detecting the context
for backchannel responses by using only prosodic features. In this
method, prosodic features are extracted and processed by machine
learning algorithm to obtain rules for detecting the contexts of
backchannels. We achieved a considerably high accuracy in the
evaluation on our spoken dialogue corpus. In the future work, we
wish to carry out further research with bigger corpus.
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