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ABSTRACT

We propose a method for automatically generating a pro-

nunciation dictionary based on a pronunciation neural net-
work that can predict plausible pronunciations (realized pro-
nunciations) from canonical pronunciations. This method
can generate multiple forms of realized pronunciations using
the pronunciation network. Experimental results on spon-
taneous speech show that the automatically-derived pro-
nunciation dictionary gives consistently higher recognition
rates than a conventional dictionary.

1. INTRODUCTION

The creation of an appropriate pronunciation dictionary is
widely acknowledged to be an important component for a
speech recognition system. One of the earliest successful
attempts based on phonological rules was made at IBM
[1]. Generating a sophisticated pronunciation dictionary
1s still considered to be quite effective for improving the
system performance on large vocabulary continuous speech
recognition (LVCSR) tasks [2]. However, constructing a
pronunciation dictionary manually or by a rule-based sys-
tem requires time and expertise. Consequently, research
efforts have been directed at constructing a pronunciation
dictionary automatically. In the early 1990s, the emer-
gence of phonetically-transcribed (hand-labeled) medium-
size databases (e.g., TIMIT and Resource Management)
encouraged a lot of researchers to explore pronunciation
modeling [3][4]. Although all of these approaches are able
to automatically generate pronunciation rules, hand-labeled
transcriptions by expert phoneticians are required. As
a result, automatic phone transcriptions generated by a
phoneme recognizer, which enable one to cope with a large
amount of training data, have been used in pronunciation
modeling [5][6]. Recently, LVCSR systems have started
to treat spontaneous, conversational speech, such as the
Switchboard corpus and consequently, pronunciation mod-
eling has become an important topic because word pronun-
ciations vary more here than in read speech [7][8].

In this paper, we propose a method for automatically gen-
erating a pronunciation dictionary on the basis of a spon-
taneous, conversational speech database. Our approach
is based on a pronunciation neural network that can pre-
dict plausible pronunciations (realized pronunciations) from
canonical pronunciations; most other approaches use deci-
sion trees for pronunciation modeling [3][6]~[8].

We define canonical and realized pronunciations as fol-
lows.

e Canonical pronunciations: Standard phoneme se-
quences assumed to be pronounced in read speech.
Pronunciation variations such as speaker variability, di-
alect, or coarticulation in conversational speech are not
considered.
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e Realized pronunciations: Actual phoneme sequences
pronounced in speech. Various pronunciation varia-
tions due to speaker or conversational speech can be
included.

2. AUTOMATIC GENERATION OF A
PRONUNCIATION DICTIONARY

2.1. Pronunciation network

To predict realized pronunciations from canonical pronun-
ciations, we employ a multilayer perceptron as shown in
Figure 1. In this paper, a realized pronunciation A(m)
for a canonical pronunciation L(m) is predicted from five
phonemes (i.e., quintphone) of the canonical pronunciation
Lim—=2),...,L(m+2)".

This raises two questions: (1) how do we train a pronun-
ciation network ? ; and (2) how do we generate multiple
realized pronunciations by using the trained pronunciation
network ? These questions are answered in the following
sections.

2.2. Training procedures

2.2.1.  Training data preparation

To train a pronunciation network, we first have to prepare
training data, that is, input (canonical pronunciation) and
output (realized pronunciation) pairs. The training data
can be prepared by transcribing the speech waveform using
phoneme recognizer and mapping the recognition result to
the canonical pronunciation as follows.

1. Conduct phoneme recognition using speech training
data for dictionary generation.

2. Align the canonical pronunciation sequence to the
recognition result using a dynamic programming algo-
rithm.

For example, if the phoneme recognition result for the
canonical pronunciation /a r ayur u/,is fawaur
i u/, the correspondence between the canonical pronuncia-
tion and the recognition result can be determined as follows:

a r a y u r u (canonical pron.)

a w a u r i u (recognition result),
where the second phoneme of the canonical pronunciation,
/x/, is substituted by /w/, and /y/ is deleted and /i/ is
inserted for the sixth phoneme of the canonical pronuncia-
tion, /r/. That is, L(2) =r, A(2) =w, L(4) =y, A(4) =x
(deletion), L(6) = r, and A(6) = {r,i} (/i/ is an inser-
tion). The correctly recognized phonemes are also treated

IThis network structure is similar to that employed in
NETtalk [9], which can predict an English word pronunciation
from its spelling. Note that the pronunciation network is de-
signed to predict realized pronunciations, for the purpose of
improving the performance in spontaneous speech recognition,
while NETtalk is designed to predict canonical pronunciations
for text-to-speech systems.
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Figure 1. Pronunciation network.

as substitutions (e.g., /a/ is substituted by /a/). Phoneme
recognition is conducted using all of the training data and
the aligned results are used as the data for input and output,
for the pronunciation neural network training (described in
the following section). Note that both the phoneme recog-
nition and alignment procedures are not performed for each
word but for each utterance.

2.2.2. Structure of pronunciation network

To train a pronunciation network, a context of five
phonemes in a canonmical pronunciation, L(m — 2), ...,
L(m + 2), is given as the input; A(m) aligned to L(m) is
given for the output. A total of 130 units (26 Japanese
phoneme sets times five contexts) are used in the input
layer. The representation of the realized pronunciation at
the output layer is localized, with one unit representing
deletion, 26 units representing substitution, and 26 units
representing insertion, providing a total of 53 output units?®.

In the previous example, when / /(deletion), which corre-
sponds to the fourth canonical string /y/, is used as A(m),
and /r a y u r/ areused as L(m—2),...,L(m+2). Here,
1.0 is given as the output unit for deletion and as the input
unit for /r/ in L(m —2), /a/ in L(m—1), /y/ in L(m), /u/
in L(m+1), and /r/ in L(m+ 2); 0.0 is given for the other
input and output units.

2.3. Generation procedures
2.3.1.  Realized pronunciation generation

Assume that we want to find the most probable pronun-
ciation for a word W in terms of pronunciation network
outputs. Let the canonical pronunciation of W be denoted
as L = [L(1),..., L(IW])], where |W] is the number of
phonemes of the canonical pronunc1at10n (IW| > 5). Re-
alized pronunciation A = [A(1),..., A(JW])] for L can be
obtained in the following steps.

1. Set i = 3, A(1) = L(1), and A(2) = L(2).
2. For the quintphone context of the i-th phoneme, | =

[L(i—2),...,L(i 4+ 2)], input 1.0 in the corresponding
input units of the pronunciation network.
3. Find the maximum unit Uly,; in all of the output
units.
(a) If Ulou: is found in the substitution units, set A(7)
to the phoneme of Ulyy;.
(b) If Uloy: is found in the insertion units, find another
maximum unit U2, in the substitution units. Set
A(%) to the phoneme list of U2y and Uleye, re-
spectively.
(c) If Ulout is the deletion unit, set A(z) =
4. Set i =i+ 1.
5. Repeat step 2 to step 4 until ¢ = |W| — 1.
6. Set A(JW|—1) = L(|W| —1) and A(|W]) = L(|W]).

2In this paper, we do not treat insertions of more than two
phonemes, because there are relatively very few of them and the
number of weights can be reduced.

2.3.2. Multiple pronunciations with likelihoods

Multiple alternative pronunciations can be obtained by
finding the N-best candidates based on the output values
of the network. Multiple realized pronunciations can be de-
termined by multiplying each normalized output for all pos-
sible combinations and choosing the probable candidates.
We use a likelihood cut-off threshold for the multiplied nor-
malized output [10].

2.3.3. Integrating the pronunciation likelthood into
speech recognition

In conventional speech recognition systems, recognized
word sequence W given observation O can be obtained by
W = argmax,, P(W|0). In this paper, we extend this
formula by considering the realized pronunciation Prn for
the word W as follows:

W = argmax Z

W€W PrneWw

(Prn,W|0). (1)

Using Bayes’ Rule, the right-hand side of Eq.(1) can be
written as

argmax Z

weW PrneWw

P(O|Prn,W) P(W) P(Prn|W). (2)

The first term in Eq.(2), P(O|Prn, W), is the probability of
a sequence of acoustic observations, conditioned on the pro-
nunciation and word string. This probability can be com-
puted using an acoustic model. The second term in Eq.(2),
P(W), is the language model likelihood and can be com-
puted using an n-gram word model. We call the third term
in Eq.(2), P(Prn|W), the pronunciation model. In this pa-
per, the pronunciation network is used as the pronunciation
model.

We consider that multiple realized pronunciations mainly
represent the pronunciation variability caused by speaker
or context differences. That is, for a certain speaker and
in a certain context, only one realized pronunciation can
be taken for a word pronunciation. Therefore, we omit the
summation in Eq.(2). Furthermore, by applying exponen-
tial weighting to the language probability and pronunciation
probability, the acoustic observation O can be decoded by
the word sequence based on the following equation:

argmax  P(O|Prn,W) P(W)* P(Pro|W)®,  (3)

W€W,P7‘TLEW

where e and (3 are weighting factors for the language model
and the pronunciation model, respectively.

2.8.4. Realized pronunciations for word boundary
phonemes

Pronunciation variations for word-boundary phonemes
can be taken into account based on language statistics [10].
As language statistics, we employ word bigram models here.
Their probabilities are employed to generate realized pro-
nunciations. Because word bigram models give all possible
preceding and succeeding words and their frequencies for a
certain word, five phoneme contexts (quintphone) of word
boundary phonemes are statistically determined.

Consider that we want to find realized pronuncia-
tions for the first canonical phoneme Lw, (1) for a
word W and its canonmical pronunciation is Lw, =
[Lwe (1), ..., Lwe (IWc|)], where |Wc| is the number of
phonemes of the canonical pronunciation. Let a word which
can be preceded by W¢ be denoted as Wp whose canonical
pronunciation is Lw, = [Lwp(1),...,Lw, (|Wp]|)], where



|Wp| is the number of phonemes of the canonical pro-
nunciation. Then, the quintphone for Lw, (1) is fixed as
[LWP (|WP| - 1)7 Lw, (|WP|)7 Ly, (1)7 Ly, (2)7 Lw, (3)]
and the output values ot the pronunciation network can be
computed. By computing output values for all possible pre-
ceding words for Ly, the output value of the ¢-th output

unit, Sw,i(1), is statistically computed as

Swei(l)= > P(WelWe)Swowei(1),  (4)
wpeW

where W is the set of all possible words, P(W¢|Wp) is the
conditional probability of W¢ given by the word bigram
models, and Sw,,wp,i(1) is the output of the i-th out-
put units computed by the quintphone input using W¢ and
Wp. Similarly, the output values for other word boundary
phonemes, e.g., Lw,, (2), Lw, (|[We¢| — 1), and Lw, (|[We|),
can be statistically computed. Once the outputs for each
output unit are computed, multiple realized pronunciations
for W¢ can be obtained as described in 2.3.2..

3. PRONUNCIATION DICTIONARY FOR
SPONTANEOUS SPEECH RECOGNITION

3.1. Conditions

A total of 230 speaker (100 male and 130 female) dialogues
were used for the pronunciation network and acoustic model
training. A 26-dimensional feature vector (12-dimensional
mel-cepstrum + power and their derivatives) was computed
using a 25.6 msec window duration and a 10 msec frame
period. A set of 26 phonemes was used as the Japanese
pronunciation representations.

Shared-state context dependent HMMs (CD-HMMs)
with five Gaussian mixture components per state were
trained. The total number of states was set to 800. By
using the CD-HMMs and Japanese syllabic constraints,
phoneme recognition was performed on the training data.
The phoneme sequences of the recognition results were
taken as the realized pronunciations. For each utterance,
these realized pronunciations were aligned to their canoni-
cal pronunciations transcribed by human experts.

3.2. Pronunciation network training

Canonical pronunciations with quintphone contexts and
their correspondent realized pronunciations (about 120,000
samples in total) were used as the inputs and outputs for the
pronunciation network training. The structure of the pro-
nunciation network is shown in Figure 1, where 130 input
units, 100 hidden units, and 53 output units are used. There
is also a bias that acts as an additional input constantly set
to one. The total number of network weights including the
biases becomes 18,453 (131x100+101x53). For output and
hidden units, the sigmoid function with the mean squared
error criterion is used because each output produces a num-
ber between 0 and 1 but the sum of all outputs does not
sum up to one. The network was trained using 1,000 batch
iterations and an intermediate network after 500 iterations
was used in the following experiments. The differences in
the recognition performance for the number of iterations
are discussed in 5.1.. The phoneme recognition accuracy
between the canonical pronunciation and the training data
was 81.1%. In order to indicate how the pronunciation net-
work is able to predict pronunciation variations, we evalu-
ated the performance of the pronunciation network by the
coincidence rate and by the mean squared error (MSE) for
the training data. Figure 2 shows the coincidence rates of
target pronunciations and estimated pronunciations (solid
line), and the MSE between the targets and the estimates
(dotted line) as a function of the number of training iter-
ations. The coincidence rate for the target and canonical
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Figure 2. Coincidence rates (solid line) and mean
squared error (dotted line) of targets and estimates
for training data as a function of the number of
training iterations. The coincidence rate for the
target and canonical pronunciation (shown as Orig-
inal Correct) is 77.2 %.

pronunciation (shown as Original Correct in the figure) is
772 %.

3.3. Generation of realized pronunciation dictio-
nary

We applied the trained pronunciation network to a Japanese
pronunciation dictionary with 7,484 word entries ® devel-
oped for spontaneous speech recognition on a travel ar-
rangement task. The dictionary was constructed by human
experts considering pronunciation variabilities such as suc-
cessive voicings *, insertion and substitution of phonemes
occurring in spontaneous speech, and possible insertions of
a pause. Multiple pronunciaitons with 42,103 entries were
obtained for the 7,484 word entries by setting a cut-off
threshold, which controlled the number of realized pronun-
ciations, to 0.4 for the multiplied normalized outputs. The
multiple realized pronunciations obtained from the pronun-
ciation network for a word /w a z u k a/ are shown in
Table 1.

Table 1. Examples of realized pronunciations with
normalized likelihoods for /w a z u k a/.

pronunciation | normalized likelihood
wazuka 1.0
azuka 0.896
wazuta 0.662
azuta 0.593

4. SPONTANEOUS SPEECH RECOGNITION
EXPERIMENTS

To investigate the relative effectiveness of the proposed dic-
tionary generated in 3., we conducted continuous speech
recoghition experiments on a Japanese spontaneous speech
database.

4.1. Experimental conditions

The same training data, front-end, and acoustic model de-
scribed in 3.1. were used. For the open test set, 42 speaker

3Multi-words, which were automatically generated by the lan-
guage modeling, were also included in the entries.

4Some Japanese word pronunciations change when a com-
pound word is formed. For example, the conjunction of /k o
d o m o/ (child) and /h e y a/ (room) is pronounced /k o d o
mobeyal/.



(17 male and 25 female) dialogues were used. Variable-
order n-grams were used as the language model. A multi-
pass beam search technique was used for decoding . The
language and pronunciation probability weights, o and 3 in
Eq.(3), were equally set.

4.2. Recognition results

Recognition results in the word error rate (WER) (%) for
the simple dictionary are shown in Table 2. We can see
from this table that the proposed dictionary achieved about
a more than 9% error reduction compared to the baseline
performance.

Table 2. Recognition results.

dictionary | WER (%)
Baseline 29.0
Proposed 26.4

5. DISCUSSION

5.1. Number of iterations for NN training

The WER and the total number of realized pronunciations
as functions of neural network training iterations (50, 100,
200, 500, and 1,000) are shown in Fig. 3. The experimental
conditions were the same as those described in 4.1., except
that the threshold for the normalized likelihood was set to
0.5. The baseline expert dictionary was used for generating
the realized pronunciations. No pronunciation likelihoods
or language statistics were used in this experiment. From
these results, it can be seen that the WER was reduced
up to 500 iterations and then saturated, while the realized
pronunciations kept increasing. Note that all created dic-
tionaries outperformed the baseline dictionary.

5.2. Application to another recognition system

To see the effectiveness of the obtained pronunciation dic-
tionary on other recognition systems, is an interesting topic,
since we do not know whether the proposed method gener-
ates a universal dictionary able to be effective in other sys-
tems. To construct another system, we used Janus Recog-
nition Toolkit (JRTk) [11]. Although the same training
and test sets were used, the front-end, acoustic modeling,
language modeling, and decoder were totally different from
those in the previous experiment. Unfortunately, no sig-
nificant improvement was observed (the WER  slightly in-
creased by 0.2%). We therefore suspect that a pronunci-
ation dictionary generated based on phone recognition re-
sults, i.e., the proposed method or other similar approaches
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Figure 3. Word error rate and total number of real-
ized pronunciations as functions of neural network
training iterations.

[6] ~ [8], is difficult to use as a universal dictionary un-
less the inappropriate pronunciations caused by the phone
recognizer (i.e., recognition errors) are filtered out.

6. CONCLUSION

In this paper, a method for automatically generating a pro-
nunciation dictionary based on a pronunciation neural net-
work has been proposed. Experimental results on spon-
taneous speech recognition show that the automatically-
derived pronunciation dictionary gives higher recognition
rates than the conventional dictionary. In this paper,
only a quintphone context is used for predicting pronun-
ciation variations, i.e., words whose quintphone contexts
are the same have the same pronunciation variations. How-
ever, other factors (e.g., part-of-speech) can easily be in-
corporated into the pronunciation network by having ad-
ditional units for these factors. Although the proposed
method requires a fixed input window (i.e., a context of
five phonemes), this requirement can be relaxed by adding
word boundary phones (pad phones) to the beginning and
ending of the word. In addition, we expect the multiple
pronunciation dictionary to be a useful resource for acous-
tic model retraining by realigning the training data[7].
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