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ABSTRACT

We propose an e�cient two-pass search algorithm for
LVCSR. Instead of conventional word graph, the �rst
preliminary pass generates \word trellis index", keep-
ing track of all survived word hypotheses within the
beam every time-frame. As it represents all found
word boundaries non-deterministically, we can (1) ob-
tain accurate sentence-dependent hypotheses on the
second search, and (2) avoid expensive word-pair ap-
proximation on the �rst pass. The second pass per-
forms an e�cient stack decoding search, where the in-
dex is referred to as predicted word list and heuristics.
Experimental results on 5,000-word Japanese dicta-
tion task show that, compared with the word-graph
method, this trellis-based method runs with less than
1/10 memory cost while keeping high accuracy. Fi-
nally, by handling inter-word context dependency, we
achieved the word error rate of 5.6%.

1. INTRODUCTION

We address an e�cient search algorithm for LVCSR
on multi-pass search strategy. This approach is hope-
ful in that, as search space is narrowed gradually by
the preliminary pass, and more detailed and expen-
sive models are applied with much less computational
cost than one-pass search algorithms. Speci�cally, the
�rst pass makes use of word 2-gram. Word 3-gram and
inter-word context dependent model are introduced on
the second pass.

Among the multi-pass algorithms, word graph
methods are popular. The results of preliminary pass
are symbolized as a graph form, where each arc rep-
resents likelihood and boundary time of a hypothesis
word[1]. As it de�nitely aligns words to a certain seg-
ment of speech input, the errors due to the simple
models and approximations cannot be recovered by
the following rescoring process. This can be eased by
introducing word-pair approximation which generates
di�erent word arcs for every preceding word. But it
remarkably increases computational cost proportional
to the vocabulary size.

In this paper, we propose a search algorithm using
another intermediate form, called word trellis index.

This form has three features. First, hypotheses can
be re-aligned. It keeps track of all survived hypothe-
ses within the beam every frame. As word boundaries
are treated non-deterministically, we can get accurate
N-best hypotheses on the later pass. Second, these hy-
potheses are indexed by frame. As they can be referred
by frame (not bound to hypothesis-word), it is possible
to predict next words even after boundaries are shifted
by re-alignment. This feature enables us to perform an
e�cient stack decoding search on the later pass under
large vocabulary task. Third, context dependency can
be handled on the later pass. It allows simple \1-best
approximation" (assume no dependency) rather than
the expensive word-pair approximation.

The proposed search algorithm is mainly compared
with word-pair methods and evaluated on 5,000-word
Japanese dictation task (JNAS corpus).

2. APPROXIMATIONS IN LVCSR

2.1. 2-gram Factoring with Tree Lexicon

Word lexicon is normally tree-organized for reducing
its size in LVCSR, but each 2-gram scores cannot be
determined until the word end (leaf) nodes. So fac-
toring of language score to each node is normally used
to give linguistic constraint as early as possible. Typ-
ically, the factoring value is de�ned as follows:

�(sjv) := max
w2W (s)

p(wjv) (1)

Here s is a node in the lexicon tree, W (s) is a set of
words that share pre�x at s, and v is the last word
hypothesis. As the search proceeds, factored scores
are updated towards the leaf node[3].

This is an optimal method in that the factoring
score is guaranteed to be larger than the actual 2-gram
score, provided that v remains the same through the
current word.

2.2. N-best Approximation

Matching length of words varies depending on the con-
text by co-articulation e�ect. This dependency may
a�ect the entire sentence (sentence-dependent), but as



it is di�cult to deal with separate hypotheses for all
possible contexts in LVCSR, approximations that lim-
its the range are used. Here, two methods are com-
pared.

Word-pair approximation

Assume dependency on only a preceding word[4]. In
a frame-synchronous search, word lexicons are multi-
plied in parallel corresponding to the preceding word,
and each leafs and roots are connected to build a recog-
nition network, either dynamically or statically.

Coupled with word 2-gram, equation (1) is clearly
satis�ed at each copied lexicon, so factoring works well.
But making copies of whole lexicon for each word costs
much memory size especially in large vocabulary.

1-best approximation

Assume no dependency. Only one lexicon is used, but
the scores contain boundary error for word hypotheses
other than the best sequence. So the acoustic score is
not accurate for all hypotheses.

Moreover, together with the tree lexicon, the fac-
toring error is caused. Because hypotheses that have
di�erent preceding words are merged in a single tree,
the best one v̂ overrides others within W (s). So the
substituted value �(sjv̂) spoils optimality of factoring
and causes language score error.

3. WORD TRELLIS INDEX

Based on the viewpoint in the previous section, we �rst
review the conventional word graph method. Then, we
propose word trellis index method.

3.1. Word Graph

Word graph is a compact representation of N-best can-
didates. The arcs represent word hypotheses[1]. As
it represents each word hypothesis bound to a certain
segment of speech input, re-alignment on the later pass
is essentially not allowed. In other words, it lacks in-
formation about the non-determinacy of word bound-
aries. Even if time constraint can be ignored on the
later pass, their possible sequences are still bound by
results of the �rst pass.

The context dependency of word boundaries must
be handled on the �rst pass and thus word-pair ap-
proximations are ordinary adopted. By the same
reason, more precise and expensive acoustic models
should be also applied on the �rst pass. These causes
much computational cost as vocabulary gets large.

3.2. Word Trellis Index

We propose applying a trellis form in LVCSR. Trellis
is a kind of intermediates in which all paths of Viterbi

scores at every frame are kept[2]. Actually only the
word-end nodes that survived within the beam are suf-
�cient. At the later search, it serves as a heuristics.

As it keeps all survived word-ends per frame in-
stead of those in the N-best sequence, the time con-
straints are represented non-deterministically and not
strictly bound to any word sequence. The word bound-
aries are determined on the second search using stack
decoder, where the trellis is connected as backward
heuristics.

There are two advantages in re-alignment on the
later pass. First, the space-narrowed second pass real-
izes fully sentence-dependent scoring and recovers ap-
proximation error. Second, expensive word-pair ap-
proximation is not needed. The di�erent word-ends
dependent on the previous word context will hopefully
be included as trellis nodes in di�erent time-frames.
So even 1-best approximation will be enough for those
ends to survive. Both acoustic and linguistic errors
are recovered on the second pass that performs re-
alignment and rescoring.

However, the trellis itself is a set of nodes and
scores, and does not have an explicit predictive in-
formation for the second pass. Vocabulary-level con-
straint alone will su�ce on single word recognition[5],
or grammar-level constraint will do in small vocabu-
lary CSR[2]. In LVCSR, whose search space is huge,
space-narrowing based on preliminary acoustic match-
ing is essential.

Here, we extend the trellis form to be applicable to
LVCSR. To predict next words explicitly from the pre-
liminary results of the acoustic matching, we store the
indexes of words for every frame whose end-nodes sur-
vived in beam. In the second pass, only words within
the index at the end-frame of the hypothesis are ex-
panded.

To estimate the end frame, the word beginning
frame corresponding to each end node is also stored.
This word expansion algorithm is shown in Figure 1.
The end frame may not be correct as the matching
length may vary in the second pass, but practically
their di�erences are absorbed by the trellis property
that word-ends appear successively in a certain range
of frames.

The second pass performs a best-�rst stack decod-
ing search in backward (right-to-left) direction, using
the word trellis index as both heuristics and word pre-
diction. The score for a hypothesis n is given as:

f(n) = g(n) + h(n) (2)

where g(n) is a forward score and h(n) is a backward
score on the �rst pass. As search proceed per word,
word-level constraints such as word 3-gram and inter-
word context dependent model can be applied easily.
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Figure 1: Word trellis index and its use in word ex-
pansion on the second pass

Table 1: Search algorithms evaluated
intermediate form

�rst pass word trellis
index word graph

word-pair word-pair+trellis word-pair+graph
1-best 1-best+trellis

4. EXPERIMENTAL RESULTS

We implemented a portable speech recognition en-
gine named JULIUS, which can deal with both 1-
best and word-pair approximation, and can use both
word trellis index and word graph as an intermediate
form. Table 1 lists combinations of methods evaluated.
The baseline is a typical word graph method (word-
pair+graph). In the comparison, inter-word context
dependency is not handled for convenience.

4.1. Condition

The task is 5,000-word dictation of Japanese News-
paper Article Sentences (JNAS) corpus collected by
Acoustical Society of Japan[6]. Language model is a
word 2-gram for the �rst pass and word 3-gram in re-
verse direction for the second pass[7] trained by the
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Figure 2: Word %Error: trellis vs. graph

Mainichi newspaper articles of 45 months. Acoustic
model is a speaker-independent, gender-dependent tri-
phone HMM[7] trained by ASJ corpus. It has 2,110
states and 16 mixtures. Lexicon contains 5,005 words
with 7,451 entries considering variety of pronunciation.

We used test set of 100 samples by 10 speakers.
The word accuracy is calculated by Katakana tran-
scription.

4.2. Trellis vs. Word Graph

First, intermediate forms are compared. Both uses
word-pair approximation on the �rst pass. Word %er-
ror per beam width is shown at Figure 2. Results
on the �rst pass is also plotted here. The word trel-
lis index achieves better accuracy (10.5%) than word
graph (12.0%) given enough beam width. It is shown
that the word-pair approximation includes some er-
rors, and they are recoverable on the second pass by
re-alignment with word trellis index.

4.3. Word-Pair vs. 1-Best Approximation

Next, two approximation methods are compared to
examine how the errors in
uence to the �nal result.
The results with word trellis index are shown in Figure
3. With 1-best approximation together with tree lexi-
con, both approximation and factoring errors increase
recognition failure on the �rst pass by 5.0%. However,
they are recovered to 1.7% on the second pass, that is
comparable to the baseline method. Thus, it is con-
�rmed that even with simple 1-best approximation,
trellis index does not lose word boundaries which will
make up the best sequence and �nally gives as same
accuracy as the word-pair approximation does.

In addition, when the beam width is relatively
small, 1-best approximation gets better accuracy by
1%. This suggests that with word-pair approximation,
same word hypotheses with di�erent contexts occupy
the beam, which are merged in word trellis index.
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Figure 3: Word %Error: word-pair vs. 1-best
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Figure 4: Computational cost

4.4. E�ciency Comparison

Next, we compare the algorithms with respect
to e�ciency. Figure 4 shows total memory size
needed. Compared to the baseline (word-pair+graph),
word trellis index (word-pair+trellis) needs trellis re-
connection procedure for re-alignment on the second
pass, but it costs a little. And the introduction of
1-best approximation (1-best+trellis) signi�cantly re-
duces computation cost. The average CPU time be-
comes almost 2/3, and the maximum workspace size
needed for the search is reduced from over 400MB to
nearly 30MB (plus 56MB for models). This di�erence
arises from the copying of lexicon on the �rst pass and
will grow as vocabulary becomes large.

Thus the proposed search method (word trellis in-
dex + 1-best approximation) is proved to be superior
in that it performs far more e�ciently while keeping
high accuracy.

4.5. Final Result

Finally, we pursue the best performance of the de-
coder. Now inter-word context dependency is handled
and triphone HMM is updated to have 3,000 states.
As a result, the word error rate of 5.6% is achieved.

5. CONCLUSION

A two-pass search algorithm with trellis interface is
presented. The trellis form is extended to word trellis
index that has the frame-indexed active word list and
corresponding time-frame information to be applicable
for LVCSR.

Compared to the conventional word graph method,
word trellis index can recover the errors caused by
the approximations. Thus, simple 1-best approxima-
tion instead of word-pair approximation is su�cient to
achieve almost the same accuracy while computational
cost is remarkably reduced. Word accuracy reaches
94.4% in the best case.
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Toolkit[7].

References

[1] H. Ney and X. Aubert : A Word Graph Algorithm
for Large Vocabulary Continuous Speech Recognition,

Proc. ICSLP, pp1355{1358 (1994).

[2] F.K.Soong and Eng-Fong Huang : A Tree-Trellis

Based Fast Search for Finding the N-Best Sentence
Hypotheses in Continuous Speech Recognition, Proc.

IEEE-ICASSP, pp705-708 (1991).

[3] J.J.Odel, V.Valtchev, P.C.Woodland and S.J.Young

: A One Pass Decoder Design for Large Vocabulary
Recognition, Proc. ARPA Human Language Technol-

ogy Workshop, pp.405{410 (1994).

[4] R.Schwartz et al. : A Comparison of Several Approx-
imate Algorithms for Finding Multiple (N-best) Sen-

tence Hypotheses, Proc. IEEE-ICASSP, pp701{704

(1991).

[5] J.K.Chen, F.K.Soong and L.S.Lee : Large Vocabulary
Word Recognition Based on Tree-Trellis Search, Proc.

IEEE-ICASSP, pp137{140 (1994).

[6] K.Itou, M.Yamamoto, K.Takeda, T.Takezawa,

T.Matsuoka, T.Kobayashi, K.Shikano and S.Itahashi
: The Design of the Newspaper-Based Japanese Large

Vocabulary Continuous Speech Recognition Corpus,

Proc.ICSLP (1998).

[7] T.Kawahara, T.Kobayashi, K.Takeda, N.Minematsu,
K.Itou, M.Yamamoto, A.Tamada, T.Utsuro and

K.Shikano : Sharable Software Repository for

Japanese Large Vocabulary Continuous Speech
Recognition, Proc.ICSLP (1998)


