SEMI-AUTOMATED INCREMENTAL PROTOTYPING OF
SPOKEN DIALOG SYSTEMS

Stefan Kaspar and Achim Hoffmann
School of Computer Science and Engineering
University of New South Wales, Sydney 2052 NSW, Australia
Email: {chebe,achim} @cse.unsw.edu.au

ABSTRACT

Cost-effective development and widespread deploy-
ment of spoken language systems is only possible if
their development process is substantially supported
by intelligent design tools. In this paper, we present
PTA a new approach for fast prototyping of complex
spoken dialog systems. Dialog structures are specified
in a specialised fully declarative design language. Dia-
log design in PIA is considered a knowledge acquisition
task, where knowledge about possible user input and
the desired system reaction is incrementally derived
from actual interactions. PTA strongly supports the
designer to keep the fine balance between robustness
of recognition and the naturalness of the dialog.

1. INTRODUCTION

In this paper, we present PTIA a new approach for
designing spoken dialog systems which is particularly
effective for rapid prototyping. Dialog design in PTA
is based on the following observation: At any time in
a dialog there is only a limited number of tasks a user
could ask for or perform. However, for every task there
may be a virtually unlimited number of ways in which
a user could ask for this task or execute it. Modelling
ungrammatical input and out-of-vocabulary words is
very difficult if not impossible. On the other hand for
every task there may only be a limited number of key-
words or keyword phrases that specify this task and
distinguish it from another task. For the purpose of
creating a spoken dialog application we are not inter-
ested in grammars that define how users can express
themselves. Our approach is rather based on the set
of keywords that distinguishes one task from another.
Our basic idea is the following: Treat dialog design
as a knowledge acquisition process [3]. Use utterances
from users and and their interactions with the system
to add knowledge about a spoken dialog application.
The knowledge describes the tasks a user typically per-
forms at each stage of a spoken dialog. This includes
the keyword phrases that select this task and the ways
in which users can be guided if they need help.

2. SYSTEM OVERVIEW

PTA, see figure 1, consists of three main components:
The dialog editor, the dialog engine and the dialog
knowledge wizard. The dialog editor is a graphical
design interface similar to [5]. It allows designers to
define a spoken dialog using the elements of our lan-
guage, the dialog units, also abbreviated DUs. For
all non interface related functionality the dialog editor
provides a scripting tool based on Visual Basic. The
dialog engine interprets the dialog units and their hier-
archical composition. The dialog engine itself consists
of four components. The speech recognition engine,
the text-to-speech engine, the grammar compiler and
the control component. PIA supports standard inter-
faces to access speech recognition and text-to-speech
engines. This allows us to experiment with different
third-party state-of-the art speech tools. The control
component is the core of the dialog engine. It initiates
the dialogs, sends ASCII texts to the text-to-speech
tool, changes the state of the dialog after every speech
recogniser input and controls the grammar compiler.
The grammar compiler generates context-free gram-
mars at run time using the knowledge encoded in our
dialog units and the current state of the dialog. The
third and last component, the dialog knowledge wizard
uses knowledge extracted from utterances of real users
to enhance, modify and correct spoken dialog appli-
cations. A spoken dialog designer will use the dialog
editor to create an initial basic bootstrap system. Sub-
sequently, the dialog knowledge wizard will assist the
designer in revising and refining the initially provided
dialog system.

3. PIA’S DESIGN LANGUAGE

The definition of our design language used in PTA
was motivated by the idea of encapsulating all dia-
log information in a simple easily understandable data
structure [1]. Our design language is based on our
notion of task. By task we mean subdialogs such as
those for the acquisition of various pieces of informa-
tion from the user or providing requested information

Dialog Knowledge
Wizard

Recorded |
Interactions,

‘Recugnlt\o‘
n Results

AsCll
strings |

Dialog /

Designer,
User

Figure 1: An overview of PIA.

to the user. Our design language allows a hierarchi-
cal design of the task structure. The basic building
block of our design language is the so-called dialog
unit (DU). From the designer’s point of view, a di-
alog unit represents a task a user can perform or a
piece of information that the system needs in order
to achieve its goal. Every dialog unit has three slots:
The rules slot, the decomposition slot, and the prompts
slot. The rules slot: Rules are keyword phrases with
which users typically refer to this dialog unit. For ex-
ample, for a DU named MOTIVATETOGIVEPRICE
the rules slot may contain the two keyword phrases
"% what’s the price *”, ”* how much *”. An ’*’is a
wild-card and stands for any sequence of words or un-
recognised sounds in an utterance. A rule matches a
spoken utterance, if the keyword phrase is contained
in the utterance. We say a user calls a dialog unit,
if at least one of the rules in the dialog unit’s rule
slot matches the given utterance. The decomposi-
tion slot stores a DU’s possible decompositions, i.e. a
set of other DUs. The DUs in the decomposition slots
specify the subtasks or the attributes for this dialog
unit. To give an example, a DU ORDERPIZZA may
have the decompositions GIVETYPE GIVESIZE and
GIVESIZE GIVETYPE, to list both orders in which
users could give the information. The response slot
stores text structures or prompts from which the dia-
log engine constructs the appropriate system output.
A DU can have any number of prompts. Every prompt
is of one of five predefined types: Intro prompts will
be used when the dialog engine assumes that the user
needs guidance to give the required information or per-
form the next step in the application. Confirmation
prompts will be used when recognition confidence is
low. The remaining types are repeat, no response and
wrong prompts, which will be explained later.

Decompositon Slot

espone Slot
netned |+ | »

Figure 2: A dialog unit in PTA.

4. DIALOG EXECUTION

A PIA led spoken dialog consists of essentially a
user calling dialog units and the system producing ap-
propriate output. That is, our dialog engine has to
handle three different tasks; recognizing which dialog
units have been called, guessing what dialog units will
be called next and producing system output. At the
core of PTA’s dialog engine is a state change algorithm.
We use states to define three different things; what di-
alog units have already been called, what dialog units
are likely to be called next and which dialog unit is
the most likely dialog unit to be called next. By defin-
ing dialog execution at the state level, we get a very
flexible way to define mixed initiative [4]. Depending
on the quality of our speech recognizer the dialog units
that can be called at a certain state of the dialog can be
restricted to a suitable number. A dialog unit can be
in one of four possible states: sleeping, alert, activated,
or set. Initially all the dialog units are in the sleeping
state. Alert dialog units are the ones that can be called
by a user, i.e. if one of the DU’s rules matches the ut-
terance. The activated dialog unit is the one that is
most likely to be called next. If the dialog stalls, i.e.
there is no user input, the dialog engine will prompt
the user for input relating to the activated dialog unit.
We say a dialog unit is set, if all the dialog units in
the decomposition slot have been set. If a dialog unit
has an empty decomposition slot, it is set as soon as
it is called. The execution of a spoken dialog in PTA
is governed by three processes, generate input predic-
tions, generate output, and change dialog unit states.
The first two processes are triggered by state changes,
the last process is triggered by the speech recogniser.
We will give some more detailed information about
these three processes in the following.

Dialog unit states State changes are triggered by
the speech recogniser or by the application itself. For
example in order to initiate a spoken dialog interaction
the application must activate one of the dialog units.
An application can also set dialog units if e.g. the in-

formation represented by this dialog unit is no longer
needed. If the speech recognition engine returns the
response or noresponse event, the dialog engine will ac-
tivate or set the dialog units whose rules are part of the
speech recognition result. If the state of a dialog unit is
changed, our control strategy causes the states of other
dialog units to be changed too. Our control strat-
egy builds on a set of heuristic rules that define how
state changes of one dialog unit causes state changes
of others. We demonstrate the three main rules on a
small example, taken from our Sydney2000 application
. The Sydney2000 application lets user ask for infor-
mation about upcoming Olympic events and results.
In our application we have a dialog unit EVENTS con-
taining the decomposition SPORT GENDER and the
rules ”what time”, ”starting times”. SPORT in turn
might contain the decomposition CYCLING SWIM-
MING. Rule 1: if a dialog unit changes to set, acti-
vate the next following step in the decomposition. If a
user speaks something like ” what time does the cycling
start”, the system will activate GENDER because this
is the only missing information in order to execute the
request. The word cycling will set the dialog unit CY-
CLING which in turn sets SPORT. The next following
step is GENDER. Rule 2: If an utterance does not
set any dialog unit, activate the dialog that was called
last in this utterance. A sentence like ”can you tell me
about starting times” calls the dialog unit EVENTS,
as it contains the rule ”starting times”. Rule 3: If
a dialog unit is activated or alerted, alert the dialog
units of its decomposition slot. Alerting dialog units
that go beyond the current focus allows users to exe-
cute more than one task at a time. If the DU EVENTS
is activated, it may ask what sport you are interested
in? A user may respond with ”women’s swimming”,
calling the DU SPORT and GENDER with a single
utterance.

Generate Spoken Qutput As stated above only one
dialog unit is activated at a time, namely the dialog
unit that is most likely to be called next. If the user
does not take initiative, PTA has to prompt the user
for input or guide them to the next task. For that
purpose, PTA uses the text-strings in the response slot
of the activated dialog unit. The first text string to use
is the intro prompt which contains information about
the choices the user has. If there is no valid input the
dialog engine takes one of the wrong or no response
prompts to provide further help. In some situations
an input will be confirmed with a confirm or repeat
prompt. Wrong prompts should be defined so as to
gradually constrain the possible user input. If all the
defined wrongs and noresponses have been used and
the user still has not given a valid input, the dialog
engine terminates the execution of this dialog unit and

returns a failed signal.

Generate Input Predictions PIA’s dialog engine
constrains the speech recognizer’s search space by con-
structing context-free grammars (CFGs). The com-
pilation algorithm in PTA adds for every dialog unit
that is alert a variable to the CFG. If the dialog unit’s
decomposition slot is empty but the rules slot is not
empty we add the following definition:

DlgunitVar={rulel| [rule N };
If the DU has decompositions that are alert add

DlgunitVar=[rulel| [rule N] {decomp
DlgunitVar | decomp DlgunitVar ... };

If the DU has an empty decomposition and rule slot
add:

DlgunitVar=dialog unit name;

5. DIALOG DESIGN

A dialog structure is declaratively described by
defining a set of dialog units. The dialog knowledge
wizard guides the user through the dialog design pro-
cess, i.e. through enhancing, modifying or updating
an initially crude bootstrap application. Our dialog
knowledge wizard ensures that all interactions which
have been covered at some stage will also be covered
at all later stages of the design process. For that pur-
pose the wizard maintains a phrase database speci-
fying what phrases have previously called what dia-
log units. The wizard has to deal with the trade-off
of producing rules that are general enough to cover a
broad spectrum of possible user input without being
too general and compromising the recognition robust-
ness. In every cycle of the dialog design process the
designer either picks a recorded utterance or provides
a sample phrase himself. If the utterance is wrongly
recognized, according to the designer, the designer is
asked to type in the uttered phrase. Dialog design con-
sists of two processes: the mapping of words to dialog
units and the generalization of rules. The first pro-
cess is run in every cycle of the knowledge acquisition
process. The second process only when the number of
rules in a dialog unit reaches a certain threshold.

Mapping of words to dialog units From the di-
alog units that were alert or activated when the error
occurred the wizard constructs a CFG as described
above. The original (typed) utterance is then repeat-
edly modified by removing words till it passes an LR-
Parse with this CFG. The string that is parsed de-
fines an initial mapping of words to dialog units. The
mapping is graphically presented to the designer. Our
dialog knowledge wizard tool now guides the designer
through the process of assigning the unmapped words

Wizard creates CFG from dialog units.

Removes word from utterance.

Until modified string passes CFG.

Presents mapping to the designer as graph.

Designer removes or adds words to the mapping graph.
If parts of the utterance remain unmapped designer.

oot W

(a) defines new dialog unit or inserts dialog unit defined
at different dialog location.

(b) specifies neighbour of new dialog unit.
7. Wizard adds phrases to phrase database.

8. If phrase is not matched by existing rules, wizard adds
phrase to rule base.

Table 1: The mapping algorithm.

to new or existing dialog units. The mapping algo-
rithm is given in table 1.

Generalize rules The purpose of the Generalize
Rules algorithm is to speed up the development pro-
cess by shortening the rules. Shorter rules will cover
more utterances as rules represent the keyword phrases
of our keyword spotter. On the other hand we have to
make sure that rules that are too short do not match
phrases intended for other dialog units and also that
the modified rules don’t compromise the speech recog-
nition robustness. To describe our generalize rules al-
gorithm we have to introduce some new definitions.
The competing dialog units of du; are DUs belonging
to the same decomposition slot as du; and which are
in parallel to du;. The phonetic distance of a duy to
dus D(duy,dus) intuitively defines how unlikely it is
that a phrase that intends to call dus calls du;. We
will give the exact definition of the phonetic distance
in the next chapter. The overall phonetic distance of
duy to all its competing dialog units C, DT (duy) is
defined as:

DT (duy,C) = minjecD(duy, du;)

ADT(duy,C,w) is the difference in the phonetic dis-
tance after removing the word w from the rules of du.
L(w, duy, c) is ratio of occurrence of a a word w in duy
divided by the average ratio of occurrence in the com-
peting dialog units. Now we rank all words in du;
according to L(w,du;,C) and ADT (duy,C,w). The
word with the highest value of L or DelatDT gets the
rank 1. The generalization degree G (du,) is defined as
the number of rules divided by the number of entries in
the dialog unit’s phrase database. The generalize algo-
rithm now removes words from the rule slot of du; till
the generalization degree reaches a certain threshold.
It does this by removing the words with worst rank
first, where as the overall rank is taken as the product
of the two ranks.

The phonetic distance DT The purpose of the
phonetic distance is to measure how likely or unlikely

it is that the rules of a dialog unit match the phrases
belonging to competing dialog units The basic idea is
to use the speech recogniser to try to recognise spo-
ken phrases that were produced by our text-to-speech
engine. For each phrase in the phrase database of the
competing dialog units we create an acoustic represen-
tation using a text-to-speech tool. Subsequently, we
activate our speech recogniser with a grammar that
has all the rules of du; in parallel. S(p;, CFG(du,)) is
the likelihood measure returned by the speech recog-
niser’s Viterbi algorithm that tells us how likely it ap-
pears that phrase p; matches the Hidden Markov Net-
work constructed from the grammar CFG(duy). The
distance measure between du; and du; is then defined
as:

D(duladuz) = (ma’wpiecs(piaCFG(dul))_l
6. DISCUSSION

This paper introduced PIA, a new framework for
fast prototyping of complex spoken dialog systems. By
treating dialog design as a knowledge acquisition pro-
cess, we avoid the need for highly skilled experts that
specify formal grammars that cover possible user in-
put. The structure of our design language proved in-
tuitive to our dialog designers and well-suited to the
task. PIA was used to build a ticket ordering and a
movie information application. Currently we are im-
plementing a sport result information system. The so
called Sydney2000 application is still being extended
and contains more than 80 dialog units to date. Fur-
ther work will have to be done to compare and mea-
sure [2] the quality of the produced applications whith
other related research. Furthermore, our future re-
search will investigate ways of dealing with other well-
known problems of natural language processing, such
as sudden topic changes and anaphoric reference.

7. REFERENCES

1. A. Abella, M. Brown, and B. Buntschuh. Development prin-
ciples for dialog-based interfaces. In ECAI96: Dialogue Pro-
cessing in Spoken Language Systems, 1996.

2. L. Hirschman and H. Thomson. Overview of evaluation in
speech and natural language processing. Survey of the State
of the Art in Human Language Technology. Cole R., Editor,
1996.

3. S. Kaspar and A. Hoffmann. Using knowledge acquisition
to build spoken language systems. In European Knowledge
Acquisition Workshop, 1997.

4. R. W. Smith. Spoken variable initiative dialog: An adapt-
able natural-language interface. IEEE Expert, 2:45-50, 1994.

5. S. Sutton, D. Novick, R. Cole, and M. Fanty. Building 10,000
spoken-dialogue systems. Proceedings of the Internatiaonal
Conference on Spoken Language Processing, Philadelphia,
1996.

