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ABSTRACT

A novel technique for speaker independent automated speech recognition is proposed. We take a
segment model approach to Automated Speech Recognition (ASR), considering the trajectory of an
utterance in vector space, then classify using a modified Probabilistic Neural Network (PNN) and
maximum likelihood rule. The system performs favourably with established techniques. Our system
achieves in excess of 94% with isolated digit recognition, 88% with isolated alphabetic letters, and 83%
with the confusable /e/ set. A favourable compromise between recognition accuracy and computer
memory and speech can also be reached by performing clustering on the training data for the PNN.

1. INTRODUCTION

Automated Speech Recognition (ASR) is a difficult task. For a complete system, one needs several
layers of processing: the signal pre-processing, feature extraction, phone recognition and syntax
analysis. This task may be simplified somewhat by considering isolated word recognition. This removes
the complexity of dealing with factors like word boundary segmentation.

Currently, the most successful technique being used in ASR is the Hidden Markov Model (HMM) [6].
HMMs have shown good performance with tractable computation; however, in order to reduce the
computation required, they make several assumptions and thus introduce modelling limitations [1].

In order to improve the modelling of time and non-stationary behaviour of speech, the trajectory of
speech has been considered [1]. Segment modelling shows the most promise in this regard. Segment
modelling involves considering speech where the fundamental unit is a segment, which contrasts with
the more conventional unit of a point or vector. The practical implementation of these segment models
is, however, rather involved.

2. METHODOLOGY

The motivation behind segment modelling is to look at the segments of speech, these of which have
trajectory like representations in vector space. A pattern matching approach can then be applied,
where an unknown utterance can be classified by comparing its trajectory with that of the labelled
training trajectories. The class of the “closest” training trajectory to the unlabelled one can then be said
to be the class of the unknown utterance.

Where Ci is the class of the unknown utterance, Vj is the trajectory of the known training vectors, Vj is
the trajectory of the unknown utterance and ||.|| is some distance metric.

This leaves open the question of how to characterise these trajectories and how to find the distance
between the two such trajectories. Deng [2] has attempted to fit piecewise polynomial functions to the
trajectory of speech. A possible approach to recognition would be to find a fitting polynomial to the
trajectory and then compare trajectories by examining the coefficients of the polynomials. The problems
with this approach are the difficulty of getting a polynomial to fit satisfactorily, and the computation
involved in finding a fitting polynomial.

We propose a novel solution to the task of characterising the trajectories and finding the minimum
distance between two trajectories, which is simple to understand and implement. Utterance trajectories
are to be treated as simply a collection of unordered points in vector space which have all been labelled
with the same class.

This set of data points is then input into a modified version of the statistically based Artificial Neural
Network, the PNN. Modification is required as the classical PNN is used for static data classification,
whereas we use it for classifying a temporally changing utterance. This form of the PNN represents a
wholly non-parametric approach to segment modelling. The modification of the PNN is discussed
below.
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2.1. Feature Extraction

After data has been acquired, it must be pre-processed in order to reduce the extraneous data that is
not pertinent to the classification process. The resulting variables of interest are known as features.
Mel-spaced Frequency Cepstrum Coefficients (MFCC) [7] are known to be successful features to use
for recognition, and accordingly we have chosen to use the MFCC for our features.

Computation of the MFCC involves the following steps:

1. the signal is windowed to 256-sample frames of duration 20 ms, with 10 ms increment

2. the magnitude of 128 DFT coefficients are then computed

3. using a triangle function spaced according to the Mel-scale, calculate 40 weighted averages

4. calculate the log of the result

5. compute the first 12 inverse discrete cosine coefficients

This process results in a series of 12 dimensional vectors that may then be passed onto a pattern
recognition tool.

2.2. Probabilistic Neural Network (PNN)

Artificial Neural Networks (ANNs), which have gained prominence in the area of pattern recognition,
have several properties that make them attractive for speech recognition. These include a relatively
simple implementation, inherently parallel algorithm (making parallel implementation a natural
progression), robustness to noise and self-learning ability. We have chosen the PNN in this experiment.

The Probabilistic Neural Network, introduced by Donald Specht in 1988, is a 3-layer, feed-forward, one-
pass training algorithm used for classification and mapping of data [4]. Unlike other ANNs, like the
back-propagation neural network, it is based on well-established statistical principles derived from
Bayes’ decision strategy and non-parametric kernal based estimators of probability density functions.
An advantage of the PNN is that it is guaranteed to approach the Bayes’ optimal decision surface
provided that the class probability density functions are smooth and continuous.

The PNN uses Parzen (or Parzen-like) probability distribution function estimators that asymptotically
approach the true underlying parent density, providing it is smooth and continuous. The PNN operates
by using spherical Gaussian radial basis functions centered at each training vector. The likelihood of an
unknown vector belonging to a given class can be expressed as

Where i is the class number, j is the pattern number, xij is the jth training vector from class i, x is the test
vector, Mi is the number of training vectors in class i, p is the dimension of vector x, σ is the smoothing
factor (the standard deviation,) and fi(x) is the sum of multivariate spherical Gaussians centred at each
of the training vectors xij for the ith class probability density function (pdf) estimate.

Classification decisions are consequently made in accordance with the Bayes’ strategy for decision
rule, which is d(x)=Ci, if

where Ci is the class i.

Modification of the PNN. The classic PNN described above is used for static data classification and
needs to be modified in order to handle speech, which is a time series of vectors.

Training utterances are a series of vectors forming a trajectory in vector space. By discounting the
temporal order of the vectors, we consider utterances as a collection of vectors. Each of the vectors in
the training set is then labeled with the class of the utterance, as in a standard PNN.
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Figure 1: Utterance trajectories in vector space. Each vector in the unknown utterance is classified as
either belonging to either class 1 or 2. The maximum likelihood over all the vectors is summed and the
most probable class is the classification of the utterance.

Classification of unknown utterances is then a generalisation of the classification procedure of the
classic PNN. Typically, a single unknown class input vector has its class likelihood calculated from all
the training vectors in the PNN. As it is desired to calculate the likelihood of a collection of vectors
belonging to a class, we perform the same calculation on each vector and sum the log likelihood score
over all the vectors in the utterance.

where gi is the likelihood of input utterance y belonging to class i and My is the number of vectors in the
utterance y. This value is then normalised by dividing by the number of vectors in the utterance, to
average over utterances with a long duration. The log function also helps with practical implementation
of the PNN by avoiding numeric underflow due to the small magnitude of the values involved.

Then as before, in accordance with Baysian principles, the class with the highest log likelihood is then
chosen as the class of the unknown input

where Ci is the class i.

In the practical implementation, the normalisation of gI by My is redundant as it is always the same input
utterance being compared in this case. Should various input utterances (which could have different
durations) be scored against each other, My would be required.

Whilst this approach to comparing trajectories has the advantage being very simple, a large number of
training data is required for good performance of the PNN, which causes problems.

CRAD. As each training vector generates a corresponding pdf in vector space, there is a proportional
relationship between the number of training vectors (of which more is better as we would be closer to
the optimal class distribution), the amount of memory and computation required and consequently, a
decrease in execution.

A solution, which could decrease the amount of memory and computation required, would be to replace
the clusters of pdfs (ie. the training vectors) which are “close” together with a single, weighted pdf. This
parameter, specifying the threshold distance of the centers of the pdfs, is called the Cluster RADius
(CRAD).

We have chosen the simple Euclidean distance as the metric used for determining how close the
vectors must be before they are amalgamated into the one training data point.

3. DATABASE

In order to mitigate the problems of data collection, quality control and have a standard against with
which to compare the results of other research, a popular speech database was desired.

Two American speaker English databases were used to provide the data for this experiment. These
being the Studio Quality Speaker-Independent Connected-Digits Corpus (TIDIGITS) and the Speaker-
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dependent Isolated Word Corpus (TI-46), both from the National institute of Standards and Technology
(NIST) in the USA.

The digits corpus comprises eleven isolated digits of zero through nine and “oh”, provided by 112
speakers (56 males and 57 females). These have been divided into a training set of 1232 utterances
and a testing set of 1243 utterances. The provided utterances have been sampled at 20 kHz and
digitized to 16 bit resolution.

TI-46 comprises a variety of data, including 46 isolated words, 10 digits, 10 computer command words
and the 26 English alphabet words. 16 speakers (8 male and 8 female) comprise this database and the
data has been acquired at the lower quality of 12,500 Hz sampling rate and digitized to 14 bit
resolution.

Of the provided data, the digits, alphabet words and a subset of the alphabet words, the confusable /e/
set (comprising of /c/, /d/, /e/, /g/, /p/, /t/, /v/ and /z/) were chosen as the task domains.

We chose to consider speaker independent speech recognition. For the digits task, two utterances for
each speaker from the training data set was used for training the PNN. The alphabet and confusable
/e/ tasks used two utterances from each speaker, once again from the training set as the training data.

4. RESULTS AND DISCUSSION

With the digits database, the PNN achieves a recognition rate in excess of 94%. The standard
Continuous Density HMM from the HTK package, using 5 states, one mixture and non-diagonal
covariance matrices, achieves a recognition rate of 96%.

On testing with the alphabet database, the PNN achieves a recognition rate of over 88%. The same
HMM gives a recognition rate of 82%. When restricting the classes to the confusable /e/ set, the PNN
gives a recognition rate of 83% and the HMM is 81%.

The CRAD used for the digits classes is 100. For the alphabets and the confusable /e/ set it is 63 and
29 respectively.

Digits Alphabet Confusable /e/ set

HMM 96.5% 82.0% 81.2%

PNN 94.1% 88.6% 83.0%

PNN with CRAD 88.7% 84.3% 78.1%

Table 1: Comparison of correct recognition.

The PNN incorporating the training data clustering results in considerably reduced memory
requirements and faster operation, at the cost of slightly worse recognition results. The worse
recognition results of the CRAD enhanced PNN can be explained by the new weighted clusters not
modelling the data distribution as well as the original training data points. The details are shown in
Table 2.

Digits Alphabet Confusable /e/ set

Decrease in memory 20% 16% 23%

speed improvement 57% 38% 46%

Table 2: Improvements in memory consumption and time when incorporating the CRAD.

5. CONCLUSION AND FUTURE DIRECTION

This work shows that a simple pattern recognition tool, like the PNN, is able to achieve comparable
results to the more conventional HMM on the simple task of word recognition, both for digits and the
alphabet words.



Possible future investigations include repeating the above but considering a speaker dependent
system, the extension to multisyllabic words, a larger vocabulary and parameterisation of the PNN to
improve the computational and memory requirements. There is also scope for further work into
investigating the CRAD adjustment to the PNN, regarding the determination of the optimal value to use,
and how this could be dynamically chosen by the system, depending on the patterns of the training
data.
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