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ABSTRACT

In this paper we define a number of confidence measures derived
from anacceptorHMM and evaluate their performance for the
task of utterance verification using the North American Business
News (NAB) and Broadcast News (BN) corpora. Results are pre-
sented for decodings made at both the word and phone level which
show the relative profitability of rejection provided by the diverse
set of confidence measures. The results indicate that language
model dependent confidence measures have reduced performance
on BN data relative to that for the more grammatically constrained
NAB data. An explanation linking the observations that rejection
is more profitable for noisy acoustics, for a reduced vocabulary
and at the phone level is also given.

1. INTRODUCTION

We define a confidence measure as a function which quantifies
how well a model matches some spoken utterance, where the val-
ues of the function must be comparable across utterances. More
specifically, anacousticconfidence measure is one which is de-
rived exclusively from the acoustic model, whereas agrammati-
cal confidence measure is derived solely from the language model
(LM). A combinedconfidence measure is derived from both the
acoustic and language models. The above definition is less re-
strictive than an often used alternative which formulates a con-
fidence measure as the posterior probability of word correctness
given a set of ‘confidence indicators’ [8]. The former definition
has the advantage of allowing confidence measures to be applied
at the state, phone and word levels; the pursuit of the latter is often
characterised by the conglomeration of multiple potential causes
of low confidence, typically through a postclassifier, obscuring
their individual contributions.

Following [9], three acoustic confidence measures are presented
in section 2. These measures are based on local phone posterior
probability estimates produced by an HMM/ANN system [7, 3].
We refer to such systems asacceptorHMMs to contrast with the
generative modelling approach adopted in most HMM systems.
We have demonstrated in [9] that acceptor HMMs are well suited
to producing computationally efficient acoustic confidence mea-
sures. One grammatical and two combined confidence measures
are also presented in section 2 for comparison.

The results of the application of these confidence measures to the
task of utterance verification at the word and phone level using
the North American Business News (NAB) and Broadcast News
(BN) corpora1 are given in section 3. This section also contains a
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brief outline of the range of metrics available for evaluating confi-
dence measures together with a discussion of the insights into the
causes of low confidence provided by the results.

2. CONFIDENCE MEASURES

2.1. Acoustic Measures

Three purely acoustic confidence measures are defined below for
an hypothesised phoneqk with a durationD= ne�ns+1, where
ns andne are the start and end frames respectively. The acoustic
observation vector at framen is denotedxn.

Posterior Probability nPP(qk) is computed by rescoring the Viterbi
state sequence using the local posterior probability esti-
mates produced by the acceptor HMM acoustic model and
duration normalising:

nPP(qk) =
1
D

ne

∑
n=ns

log(p(qkjx
n)) : (1)

Scaled Likelihood The ‘scaled likelihood’ ofqk is obtained by
dividing the local posterior probability estimate by the class
prior, obtained from the acoustic data:

p(xn
jqk)

p(xn)
=

P(qkjxn)

P(qk)
: (2)

nSL(qk) is the duration normalised log scaled likelihood
of qk:

nSL(qk) =
1
D

ne

∑
n=ns

log

�
p(qkjxn)

p(qk)

�

= nPP(qk)� log(p(qk)) : (3)

Per Frame Entropy S(ns;ne) is the per frame entropy of theK
phone class posterior probabilities estimated by the accep-
tor HMM acoustic model, averaged over the intervalns to
ne:

S(ns;ne) =�

1
D

ne

∑
n=ns

K

∑
k=1

p(qn
kjx

n) log(p(qn
kjx

n)) : (4)

2.2. Grammatical and Combined Measures

Equations for the one grammatical and two combined confidence
measures are:

N-gram Probability nNG(qk) is computed by rescoring the op-
timal phone sequence using the probability ofqk condi-
tioned upon itsn-gram historyh, as estimated by the LM,
and durationally normalising:

nNG(qk) =
1
D

log(p(qkjh)) : (5)



N-gram based Posterior Probability nPPng(qk) results from re-
placing the acoustic class prior inclusive in nPP(qk) with
then-gram probability of that class:

nPPng(qk) =
1
D

ne

∑
n=ns

log

�
p(xn

jqk)

p(xn)
:p(qkjh)

�
(6)

= nSL(qk)+ log((qkjh)) : (7)

Lattice Density LD(ns;ne) is a measure of the density of com-
petitors in ann-best lattice of decoding hypotheses and is
computed by averaging the number of unique decoding hy-
potheses which pass through a frame over the intervalD:

LD(ns;ne) =
1
D

ne

∑
n=ns

NCHn ; (8)

where NCHn is the number of competing decoding hy-
potheses which pass through thenth frame of the lattice.
If LD (ns;ne) is computed from ann-best lattice of word
hypotheses, NCHn is equivalent to the ‘active word count’
described in [5].

nPP(qk) and nSL(qk) may be extended to a word hypothesiswj
by summing their values over theL phone hypotheses constituent
to wj and normalising byL [2]. S(ns;ne) and LD(ns;ne) may
be derived at the word level by simply matching the period over
which they are calculated to the duration of the word hypothesis.
nPPng(wj) and nNG(wj) make use of word level LM statistics.

3. EXPERIMENTS

3.1. Utterance Verification

The task of utterance verification maybe cast as astatistical hy-
pothesis test, where the decision to accept or to reject the null
hypothesisH0, regarding the correctness of the recogniser output,
is based upon a threshold on the confidence estimate. A number
of metrics are available to evaluate the performance of the confi-
dence measure in this case. The simplest of these is theuncondi-
tional error rateof the hypothesis test, where an error will occur
if H0 is rejected when it is true (a type I error) or accepted when it
is false (a type II error). The individual probabilities of type I and
type II errors provide error statisticsconditionedupon a particu-
lar state of nature (the truth or falsity ofH0). The unconditional
error rate evaluates the performance of an hypothesis test relative
to a particular task, whereas the two conditional error rates can be
used to evaluate the performance of the test independently of the
prior probabilities of the two states of nature. Whilst conditional
error rates (task independent) are useful for confidence measure
development, only unconditional error rates are reported here due
to space constraints and the desire to provide task dependent re-
sults.

In addition to unconditional and conditional error rates, a range of
evaluation metrics including mutual information [4], ROC (Re-
ceiver Operating Characteristic) [11] and DET (Detection Error
Tradeoff) [6] curves and distributional separability have been in-
vestigated in [10]. Two findings of this investigation were that the
diverse set of metrics broadly agree in their evaluations and that
duration normalisation was beneficial for all confidence measures.

Utterance verification experiments were performed using the Hub-
3 1995 evaluation test set of the NAB corpus and seven episodes
from the 1996 training set of the BN corpus. TheABBOT large

vocabulary continuous speech recognition (LVCSR) system [7]
was used to decode each data set under two conditions. The first
used theword level decoding constraintsof a pronunciation lexi-
con and a wordn-gram LM; the second used neither of these and
so was governed only by thephone level decoding constraintsof
a bigram defined over the phoneset (estimated from the acoustic
training data). Recognition output at the word and phone levels
may be recorded for the first condition, whereas only phone level
output may be recorded for the second.

3.2. Word vs. Phone Level

A broad trend in two dimensions can be seen in figures 1 and 2.
Firstly, rejection is more profitable for BN than for NAB data and
secondly rejection is more profitable for phone constraint decod-
ing hypotheses than at the word level. To explain this, consider
the range of values which a confidence measure may take: non-
speech sounds will cause gross model mismatches and so lead to
large reductions in confidence in comparison to that for correctly
recognised clean speech. Conversely, the occurrence of OOV
words, for example, will cause more subtle model mismatches
as a pronunciation model from the lexicon of a LVCSR system
may be incompatible with an OOV word by perhaps only a single
phone. Such disparities will give rise to correspondingly small
reductions in confidence.

This pattern of confidence reduction is complicated, however, by
the presence of crude pronunciation models in the lexicon. Such
models subtly reduce the confidence with which words are cor-
rectly recognised. This ‘noise’ on the confidence measure values
masks the range of confidence associated with, OOV words. This
masking makes it difficult to set a threshold for profitable rejec-
tion for the clean speech of the NAB corpus, whereas the presence
of non-speech sounds in the BN data facilitates profitable rejec-
tion (figure 1).

Mismatches will be more distinct for phone constraint decodings,
facilitating more profitable rejection, as there is no correlate of
a crude pronunciation model at this level. It should be noted,
however, that the effect of crude pronunciation models extends to
the phone level to some degree, as phone hypotheses are marked
against Viterbi alignments derived using an imperfect pronuncia-
tion lexicon. Noise will be manifest at the phone level, therefore,
as incorrect phone hypotheses will be marked as correct and vice
versa.

Additional experiments carried out to investigate this theory fur-
ther are described in the sections below. It should be noted that
the point of minima on the unconditional error rate curves, inde-
pendent of the profitability of rejection, is indicative of the degree
of difficulty of the recognition task.

In addition to these broad trends, it can be seen from figures 1
and 2 that both LD(ns;ne) and nNG(wj) perform badly at the
phone level and on BN data at the word level, whereas they per-
form at least as well as the other measures on NAB data at the
word level. At the word level the LM is far more informative for
the highly grammatically constrained NAB data than it is for the
relatively less constrained BN data, whilst at the phone level only
a bigram language model was used.
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Figure 1: Word level unconditional error rate. NAB (Left) BN (Right).
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Figure 2: Unconditional error rate for phone level constraint decodings. NAB (Left) BN (Right).

3.3. Differing Acoustic Conditions

The gross model mismatches caused by non-speech sounds, facil-
itating profitable rejection, is clearly illustrated in figure 3. The
BN corpus is partitioned into 7 acoustic conditions. The plot on
the left side of the figure is for the F0 condition, which is com-
posed of clean, planned speech similar to that found in the NAB
corpus, decoded using word level constraints. The similarity of
NAB and F0 data is borne out by the likeness between the plots
for the two data types. The plot on the right side of the figure is for
the FX condition, which can contain very noisy speech and non-
speech sounds. The arrow heads below the abscissa of the two
plots in figure 3 indicate the position of the overall best thresh-
old (i.e. calculated over all 7 acoustic conditions). These two
reference markers indicate that this threshold is beyond the best
value for F0 data and below that for FX data, as one might ex-
pect. The second plot also highlights the completely uninforma-
tive nature of the language model and the good performance of
S(ns;ne) for the FX condition. S(ns;ne) is designed to give high
confidence for clean speech and low confidence in the presence
of non-speech sounds, irrespective of the actual decoding hypoth-
esis. For this reason the measure performs badly on NAB data,
but is useful for portions of the BN corpus. We have success-

fully employed S(ns;ne) for filtering out portions of unrecognis-
able acoustics from the input stream to the recogniser [1].

3.4. Rich vs. Sparse Lexicon

An increasing degree of mismatch for incorrect decoding hypothe-
ses, will occur as the ‘richness’ of the lexicon is progressively re-
duced. A marked improvement in the profitability of rejection
is seen between the plot on the left side of figure 1, which is
for the 60k word baseline lexicon (OOV rate: 0.58%), and fig-
ure 4, which is for a 5k word decoding vocabulary (OOV rate:
8.56%). This result clearly indicates that utterance verification
performance is dependent upon the vocabulary size.

4. CONCLUSIONS

The confidence measures that we have presented have a simple
and explicit link to the models, allowing them to extract more
subtle information regarding the cause of low confidence. Effects
that we have found include:

� Crude pronunciation models limit confidence measure per-
formance by masking relatively subtle reductions in confi-
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Figure 3: Word level unconditional error rate on BN data for the F0 (Left) and FX acoustic conditions (Right).
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Figure 4: Word level unconditional error rate on NAB data for a
5k word decoding vocabulary.

dence caused by, for example, OOV words.

� Non-speech sounds cause gross model mismatches, be-
yond the range masked by crude pronunciation models,
and so may be profitably rejected.

� The degree of model mismatch associated with incorrect
decoding hypotheses for clean, read speech is increased as
the vocabulary size is decreased. If the vocabulary size
is sufficiently reduced, model mismatch may eventually
be pushed past the range masked by crude pronunciation
models, facilitating profitable rejection.

� The pattern of confidence reduction is subject to less ‘noise’
at the phone level allowing for more profitable rejection.

� Reduced quality of LM fit limits the performance of LM
based confidence measures for the move from highly gram-
matically constrained read speech to broadcast news data.

� A set of complimentary confidence measures can be de-
signed which respond to various causes of low confidence.
For example, S(ns;ne) is designed to signal low confidence
for noisy acoustics and high confidence for clean.

5. REFERENCES

[1] J. Barker, G. Williams and S. Renals. “Acoustic confidence
measures for segmenting broadcast news”. Inthese proceed-
ings.

[2] G. Bernardis and H. Bourlard. “Improving posterior based
confidence measures in hybrid HMM/ANN speech recogni-
tion systems”. Inthese proceedings.

[3] H. Bourlard and N. Morgan.Connectionist Speech Recogni-
tion: A Hybrid Approach. Kluwer, 1994.

[4] S. Cox and R. Rose. “Confidence measures for the switch-
board database”. InProceedings of ICASSP, pages 511-515,
1996.

[5] L. Hetherington. “New words: Effect on recognition per-
formance and incorporation issues”. InProceedings of Eu-
roSpeech, pages 1645-1648, 1995.

[6] A. Martin, G. Doddington, T. Kamm, M. Ordowski and M.
Pryzybocki. “The DET curve in assessment of detection Task
performance”. InProceedings of EuroSpeech, pages 1895-
1898, 1997.

[7] A.J. Robinson, M.M. Hochberg and S.J. Renals. “The use
of recurrent networks in continuous speech recognition”. In
C-H. Lee, F.K. Soong and K.K. Paliwal, editors,Automatic
Speech and Speaker Recognition, pages 233-258. Kluwer,
1996.

[8] M. Weintraub, F. Beaufays, Z. Rivlin, Y. Konig and A. Stol-
cke. “Neural - network based measures of confidence for
word recognition”. InProceedings of ICASSP, pages 887-
890, 1997.

[9] G. Williams and S. Renals. “Confidence measures for hy-
brid HMM/ANN speech recognition”. InProceedings of Eu-
roSpeech, pages 1955-1958, 1997.

[10] G. Williams “A study of the use and evaluation
of confidence measures in automatic speech recog-
nition”. Technical report CS-98-02, Department of
Computer Science, University of Sheffield, 1998.
http://www.dcs.shef.ac.uk/people/G.Williams.

[11] M.H. Zweig and G. Cambell. “Receiver-operating charac-
teristic (ROC) plots: A fundamental evaluation tool in clinical
medicine” Clinical Chemistry, 39(4):551-577, 1993.


