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ABSTRACT brief outline of the range of metrics available for evaluating confi-
nce measures together with a discussion of the insights into the

. ) ) . d
In this paper we define a number of confidence measures der'vgguses of low confidence provided by the results

from anacceptorHMM and evaluate their performance for the
task of utterance verification using the North American Business
News (NAB) and Broadcast News (BN) corpora. Results are pre-
sented for decodings made at both the word and phone level which .
show the relative profitability of rejection provided by the divers 1. Acoustic Measures

set of confidence measures. The results indicate that languapree purely acoustic confidence measures are defined below for
model dependent confidence measures have reduced performaggeypothesised phomg with a durationD = ne — ns+ 1, where

on BN data relative to that for the more grammatically COﬂStraineﬁS and Ne are the start and end frames respec’[ive|y_ The acoustic
NAB data. An explanation linking the observations that rejectiof@)bservation vector at frameis denotedk".

is more profitable for noisy acoustics, for a reduced vocabulal
and at the phone level is also given.

2. CONFIDENCE MEASURES

regosterior Probability nPRqy) is computed by rescoring the Viterbi
state sequence using the local posterior probability esti-
mates produced by the acceptor HMM acoustic model and

1. INTRODUCTION duration normalising:
We define a confidence measure as a function which quantifies NPRG) = 1 % log (p(ak[x")) - 1)
how well a model matches some spoken utterance, where the val- D nh,

ues of the function must be comparable across utterances. More . ) - , . .
specifically, anacousticconfidence measure is one which is de-Scaled Likelihood The ‘scaled likelihood’ ofg is obtained by

rived exclusively from the acoustic model, whereagrammati- dividing the local posterior probability estimate by the class
cal confidence measure is derived solely from the language model ~ Prior, obtained from the acoustic data:

(LM). A combinedconfidence measure is derived from both the p(X"a)  P(ai/xM)

acoustic and language models. The above definition is less re- pOx) = Plgo 2
strictive than an often used alternative which formulates a con-

fidence measure as the posterior probability of word correctness ~ hSL(dk) is the duration normalised log scaled likelihood

given a set of ‘confidence indicators’ [8]. The former definition of ok:

has the advantage of allowing confidence measures to be applied 1 Ne P(Cix")

at the state, phone and word levels; the pursuit of the latter is often nSliogx) = = Z log <7>
characterised by the conglomeration of multiple potential causes D n&n P(ck)

of low confidence, typically through a postclassifier, obscuring = nPRok) —log(p(ak)) - 3)

their individual contributions. .
Per Frame Entropy S(ns,ne) is the per frame entropy of the

Following [9], three acoustic confidence measures are presented ~ Phone class posterior probabilities estimated by the accep-
in section 2. These measures are based on local phone posterior ~ tor HMM acoustic model, averaged over the intemato

probability estimates produced by an HMM/ANN system [7, 3]. Ne:

We refer to such systems asceptorHMMSs to contrast with the 1 N K

generative modelling approach adopted in most HMM systems. S(ns,Ne) = ) Z z p(agx™) log (p(ag|x™)) . (4)
We have demonstrated in [9] that acceptor HMMs are well suited N=Nsk=1

to producing computationally efficient acoustic confidence mea- _ _
sures. One grammatical and two combined confidence measu#8. Grammatical and Combined Measures

are also presented in section 2 for comparison. Equations for the one grammatical and two combined confidence

The results of the application of these confidence measures to fhgasures are.

task of utterance verification at the word and phone level usiny-gram Probability nNG(qy) is computed by rescoring the op-
the North American Business News (NAB) and Broadcast News timal phone sequence using the probabilitygpfcondi-
(BN) corpord are given in section 3. This section also contains a tioned upon it:-gram historyh, as estimated by the LM,
and durationally normalising:
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N-gram based Posterior Probability nPRg(qy) results fromre-  vocabulary continuous speech recognition (LVCSR) system [7]
placing the acoustic class prior inclusive in fBP with  was used to decode each data set under two conditions. The first

then-gram probability of that class: used theword level decoding constraints a pronunciation lexi-
10 g con and a worah-gram LM; the second used neither of these and
e X . .
NPRg(G) = = log ( p( r?k .p(qklh)> (6) Sowas gover_ned only by thghone level d_ecodlng constraira$ _
D &, p(x") a bigram defined over the phoneset (estimated from the acoustic
—  nSL(gy) +log((qlh) . @ training data). Recognition output at the word and phone levels

may be recorded for the first condition, whereas only phone level

Lattice Density LD(ns,ne) is a measure of the density of com- OUtPut may be recorded for the second.
petitors in am-best lattice of decoding hypotheses and is
computed by averaging the number of unique decoding hy-

potheses which pass through a frame over the int@val
3.2. Word vs. Phone Level

Ne

1
LD(ns,Ne) = < NCH 8
(s, Ne) D n:zns "o ® A broad trend in two dimensions can be seen in figures 1 and 2.

Firstly, rejection is more profitable for BN than for NAB data and
where NCH is the number of competing decoding hy- secondly rejection is more profitable for phone constraint decod-
potheses which pass through thié frame of the lattice. ing hypotheses than at the word level. To explain this, consider
If LD (ns,ne) is computed from am-best lattice of word  the range of values which a confidence measure may take: non-
hypotheses, NCHiis equivalent to the “active word count’ speech sounds will cause gross model mismatches and so lead to
described in [5]. large reductions in confidence in comparison to that for correctly

nPR(K) and nSl(qy) may be extended to a word hypothesis recognised clean speech. Conversely, the occurrence of OOV
by summing their values over thephone hypotheses constituent WOrds, for example, will cause more subtle model mismaiches
to w; and normalising byl [2]. S(ns,Ne) and LD(ns, ne) may as a pronunciation model from the lexicon of a LVCSR system
be derived at the word level by simply matching the period ovef@y be incompatible with an OOV word by perhaps only a single
which they are calculated to the duration of the word hypothesi®none. Such disparities will give rise to correspondingly small
NPRy(w;) and NNGw;) make use of word level LM statistics. ~ eductions in confidence.

This pattern of confidence reduction is complicated, however, by
the presence of crude pronunciation models in the lexicon. Such
models subtly reduce the confidence with which words are cor-
rectly recognised. This ‘noise’ on the confidence measure values
The task of utterance verification maybe cast asadistical hy- masks the range of confidence associated with, OOV words. This
pothesis testwhere the decision to accept or to reject the nulmasking makes it difficult to set a threshold for profitable rejec-
hypothesidg, regarding the correctness of the recogniser outpution for the clean speech of the NAB corpus, whereas the presence
is based upon a threshold on the confidence estimate. A numlafrnon-speech sounds in the BN data facilitates profitable rejec-
of metrics are available to evaluate the performance of the contion (figure 1).

dence measure in this case. The simplest of these isntbendi-

tional error rate of the hypothesis test, where an error will occuriismatches will be more distinct for phone constraint decodings,

if Ho is rejected when itis true (a type | error) or accepted when ¥gcilitating more profitable rejection, as there is no correlate of

is false (a type Il error). The individual probabilities of type | and, crude pronunciation model at this level. It should be noted,
type Il errors provide error statisticonditionedupon a particu-  powever, that the effect of crude pronunciation models extends to
lar state of nature (the truth or falsity &fy). The unco_nditional the phone level to some degree, as phone hypotheses are marked
error rate evaluates the performance of an hypothesis test relatiygainst viterbi alignments derived using an imperfect pronuncia-
to a particular task, whereas the two conditional error rates can g, |exicon. Noise will be manifest at the phone level, therefore,

used to evaluate the performance of the test independently of the incorrect phone hypotheses will be marked as correct and vice
prior probabilities of the two states of nature. Whilst conditional,g gg.

error rates (task independent) are useful for confidence measure

development, onl_y unconditional error rates_are reported here d}i\((afiditional experiments carried out to investigate this theory fur-
to space constraints and the desire to provide task dependent re-

t'her are described in the sections below. It should be noted that
sults. . o o .
the point of minima on the unconditional error rate curves, inde-

In addition to unconditional and conditional error rates, a range dt€ndent of the profitability of rejection, is indicative of the degree
evaluation metrics including mutual information [4], ROC (Re-Of difficulty of the recognition task.
ceiver Operating Characteristic) [11] and DET (Detection Error
Tradeoff) [6] curves and distributional separability have been inin addition to these broad trends, it can be seen from figures 1
vestigated in [10]. Two findings of this investigation were that the@nd 2 that both LDns,ne) and nNGw;) perform badly at the
diverse set of metrics broadly agree in their evaluations and thahone level and on BN data at the word level, whereas they per-
duration normalisation was beneficial for all confidence measuref@rm at least as well as the other measures on NAB data at the
word level. At the word level the LM is far more informative for
Utterance verification experiments were performed using the Hulhe highly grammatically constrained NAB data than it is for the
3 1995 evaluation test set of the NAB corpus and seven episodesatively less constrained BN data, whilst at the phone level only
from the 1996 training set of the BN corpus. TRBBOT large  a bigram language model was used.

3. EXPERIMENTS

3.1. Utterance Verification
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Figure 1: Word level unconditional error rate. NAB.éft) BN (Righ?.
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Figure 2: Unconditional error rate for phone level constraint decodings. NA&t( BN (Righ?).

3.3. Differing Acoustic Conditions fully employed 3ng, ne) for filtering out portions of unrecognis-

able acoustics from the input stream to the recogniser [1].
The gross model mismatches caused by non-speech sounds, facil-

itating profitable rejection, is clearly illustrated in figure 3. The : :
BN corpus is partitioned into 7 acoustic conditions. The plot or§'4' Rich vs. Sparse Lexicon
the left side of the figure is for the FO condition, which is com-An increasing degree of mismatch for incorrect decoding hypothe-
posed of clean, planned speech similar to that found in the NABes, will occur as the ‘richness’ of the lexicon is progressively re-
corpus, decoded using word level constraints. The similarity aluced. A marked improvement in the profitability of rejection
NAB and FO data is borne out by the likeness between the plois seen between the plot on the left side of figure 1, which is
for the two data types. The plot on the right side of the figure is fofor the 60k word baseline lexicon (OOV rate: 0.58%), and fig-
the FX condition, which can contain very noisy speech and nonire 4, which is for a 5k word decoding vocabulary (OOV rate:
speech sounds. The arrow heads below the abscissa of the 866%). This result clearly indicates that utterance verification
plots in figure 3 indicate the position of the overall best threshperformance is dependent upon the vocabulary size.

old (i.e. calculated over all 7 acoustic conditions). These two
reference markers indicate that this threshold is beyond the best
value for FO data and below that for FX data, as one might ex-
pect. The second plot also highlights the completely uninformay,
tive nature of the language model and the good performance 9
S(ns, ne) for the FX condition. $ns,ne) is designed to give high g 46 information regarding the cause of low confidence. Effects
confidence for clean speech and low confidence in the prese &t we have found include:

of non-speech sounds, irrespective of the actual decoding hypoth-

esis. For this reason the measure performs badly on NAB data, e Crude pronunciation models limit confidence measure per-
but is useful for portions of the BN corpus. We have success- formance by masking relatively subtle reductions in confi-

4. CONCLUSIONS

e confidence measures that we have presented have a simple
d explicit link to the models, allowing them to extract more
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Figure 4: Word level unconditional error rate on NAB data for a
5k word decoding vocabulary.
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Figure 3: Word level unconditional error rate on BN data for the E6ff) and FX acoustic condition&R{ghi).
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dence caused by, for example, OOV words.

Non-speech sounds cause gross model mismatches, be-
yond the range masked by crude pronunciation models,
and so may be profitably rejected.

The degree of model mismatch associated with incorregg]

decoding hypotheses for clean, read speech is increased as cke.

the vocabulary size is decreased. If the vocabulary size
is sufficiently reduced, model mismatch may eventually
be pushed past the range masked by crude pronunciati?g]
models, facilitating profitable rejection.

The pattern of confidence reduction is subject to less ‘noise’

at the phone level allowing for more profitable rejection. [10] G. Williams

Reduced quality of LM fit limits the performance of LM
based confidence measures for the move from highly gram-
matically constrained read speech to broadcast news data.

A set of complimentary confidence measures can be de-
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