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ABSTRACT

In this paper we define an acoustic confidence measure based
on the estimates of local posterior probabilities produced by a
HMM/ANN large vocabulary continuous speech recognition sys-
tem. We use this measure to segment continuous audio into re-
gions where it is and is not appropriate to expend recognition ef-
fort. The segmentation is computationally inexpensive and pro-
vides reductions in both overall word error rate and decoding
time. The technique is evaluated using material from the Broad-
cast News corpus.

1. INTRODUCTION

Most speech recognition tasks to date have required the recogni-
tion of discrete utterances over which both the speaker and chan-
nel characteristics remain constant. It is given that the data sup-
plied to the recogniser is speech and so speech detection amounts
to little more than trimming off leading and trailing silences. How-
ever, practical speech recognition systems cannot expect to be
supplied with such pre-segmented data. Faced with an unseg-
mented stream of audio, from a radio broadcast for example, the
first task that must be performed is to decide which regions con-
tain speech and which regions do not.

Given that we accept the limitations of our speech recogniser, a
pragmatic goal is not a segmentation into speech and non-speech,
but rather into regions that arerecognisablespeech and those
which are not. This second class not only contains non-speech au-
dio, such as music, but also speech for which the acoustic condi-
tions are such that the data is not sufficiently well matched by the
models to produce a reliable recognition result. A related model
based approach to speech detection is described in [1].

If this segmentation can be provided through the use of a purely
acoustic confidence measure which is not dependent upon any
particular decoding hypotheses (see section 2), it may be com-
putationally inexpensive and computed before recognition is at-
tempted. A segmentation system of this kind concentrates recog-
nition effort exclusively upon regions where it may be usefully ap-
plied. The remainder of the paper describes the formation and ap-
plication of such a confidence measure derived from local poste-
rior probability estimates produced by the ABBOT Hidden Markov
Model/Artificial Neural Network (HMM/ANN) large vocabulary
continuous speech recognition (LVCSR) system [2].
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2. ACOUSTIC CONFIDENCE MEASURE

A confidence measure may be defined as a function which quan-
tifies how well a model matches a spoken utterance. Such a mea-
sure may be derived from the output of both the acoustic and
language models, or from either model separately. Anacoustic
confidence measure is one which is derived exclusively from the
acoustic model. The acoustic confidence measure employed here,
S(ns; ne), is the entropy of theK posterior phone probability es-
timatesq output by a recurrent network averaged over an interval
D [5]:
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wherex is the acoustic data and the intervalD = ne � ns + 1,
with the start and end frames denotedns andne respectively.

In regions of the signal where the models provide a good match
to the data, the distribution of phone posteriors will typically be
dominated by a single phone class. Such a distribution has low
entropy. However, during regions of non-speech, or poorly mod-
elled speech, several alternative phone models may have roughly
equal posterior probabilities, leading to a higher value ofS. Ide-
ally, there should be a clear distinction between the regions of
well modelled speech where the value ofS is low, and regions of
poorly modelled speech and non-speech where the value is high.
However, there are several factors that weaken the power of the
measure.

Firstly, it is possible for certain models to be well matched to the
data even during periods of non-speech. This is most obviously
true for the silence model, but there are other phone models that
might be closely matched to non-speech sounds - e.g background
hiss can be mistaken for a sibilant such ass. Conversely there
are certainweakphones that are often ambiguous even in clean,
otherwise well-modelled speech. For these experiments we com-
piled a list of weak phones containing:ix, dx, uh, axr andax. By
excluding frames which have the highest posterior probability of
any of these phone classes, the power of the confidence measure
can be increased.

Secondly, due to the piecewise stationary assumption, the per-
frame entropy is inherently very noisy. Even in clean speech
spikes occur in the entropy profile at regular intervals correspond-
ing to predictably poorly modelled phone transitions. These spikes
can easily obscure the underlying trends (see figure 1). However,
by applying a median filter with a sufficiently short window (50–
80ms) many of these spikes can be removed reducing the value of



S during the speech regions relative to that during the non-speech
regions.
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Figure 1: Per-frame entropy for the phrase “America in black and
white”. Although this is clean studio speech entropy spikes occur
at each of the phone transitions.

3. SEGMENTATION

Figure 2 plots values of two versions of the entropy measure over
a 10 minute segment of a radio broadcast. The values were cal-
culated by removing silence and the weak phones and averaging
over a 40 frame (� 600ms) window. It can be seen that even af-
ter this averaging there remain rapid fluctuation. These were fil-
tered out prior to segmentation using a further median smoothing
stage. This final smoothing, shown in the lower panel, was per-
formed over an approximately 10 second window. Segmentation
was performed by locating local maxima or minima in the dif-
ference function and declaring these as segmentation points when
their absolute value was over an empirical threshold.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

2.5

3

Figure 2: The raw entropy measure (top) and the smoothed and
segmented entropy measure (bottom) for a 10 minute extract from
a broadcast news program.

Although this procedure is able to provide segmentation points,
the heavy smoothing of the entropy function causes these points
to be positioned to within a few seconds of their correct location.
Therefore, the locations must be ‘fine tuned’ before they can be
used. This was accomplished using the KL2 distance metric, as
described by Siegler et al. [3]: Means and variances were cal-
culated for the distribution of the front-end processed acoustics

(i.e. prior to any entropy calculations) in two second windows
on either side of a putative segmentation point. The segmentation
point was then adjusted so as to maximise the distance between
the distributions.

4. CLASSIFICATION

Classification of the segments was based on the same acoustic
confidence measure employed for the segmentation: The entropy
over the phone posteriors was calculated for each frame of the
segment and 5 frame (� 80ms) median smoothing was applied to
reduce the influence of phone transitions. Frames hypothesised as
silence or as any of the weak phones were removed and the mean
entropy value for the remaining frames was calculated. Low val-
ues were taken to indicate well modelled speech worthy of de-
coding and higher values to indicate poorly modelled speech and
non-speech. A threshold was set to decide which segments to ex-
cise. A summary of the complete system is given in figure 3.
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Figure 3: A summary of the segmentation system.

5. EXPERIMENTS

A 30 minute radio show1 was selected from the the 1996 ARPA
Broadcast News (BN) corpus [4] to evaluate the system. Can-
didate segments were obtained for the entire show, i.e. including
commercial breaks not used in the Hub-4 evaluation, and decoded
using the ABBOT HMM/ANN LVCSR system. Word error rates

1ABC Nightline: Episode 05/23/96.



(WERs) were calculated by aligning the decoded word sequences
against a Viterbi alignment of the reference transcription2. The
classification portion of the system was also evaluated using the
‘focus condition’ segmentation supplied with the BN corpus for
comparison.

The acoustic model used for the experiments was composed of
two recurrent networks with 604 context-dependent phone classes
(plus silence). One network estimated the phone posterior prob-
ability distribution for each frame given a sequence of 12th or-
der perceptual linear prediction (PLP) features. The other net-
work performed the same distribution estimation with features
presented in reverse order (since recurrent networks are time-asymmetric).
The two probability estimates were averaged in the log domain.
The model was trained on BN data drawn solely from the F0 con-
dition. A 65k word backed-off trigram language model trained on
132 million words was used for the decodings.

6. RESULTS AND DISCUSSION

Table 1 shows the recognition performance for the supplied focus-
condition segmentation. The table also shows the number of words
in each condition, and the percentage this forms of the total num-
ber of words in the show (note that this includes the commercial
breaks).

Condition Words % Total WER

F0 - prepared 638 12.3 17.9
F1 - spontaneous 1342 25.9 33.4
F2 - low fidelity 813 15.7 84.4
F3 - music 162 3.1 30.9
F4 - noise 187 3.6 51.4
FX - mixed 358 6.9 81.1

All 3500 67.5 48.5

Table 1: Results using pre-segmented evaluation data.

Figure 4 shows the average WER for each of the 81 segments
returned by the automatic segmentation procedure. The area of
shading around each point in the upper panel is proportional to
the number of words in that segment whereas it is proportional to
the time taken to decode the segment in the lower panel. It can
be seen that there is a high degree of correlation between WER
and the confidence value for the segments and also that although
many of the ‘poor’ segments contain few words, they constitute a
large proportion of the total decoding time.

The correlations between a segment’s confidence estimate and it’s
WER (and decoding time) are detailed in table 2. Two measures
are shown; a simple correlation, and a correlation weighted by
the number of words in the segment. This weighting reduces the
contribution of very short segments (which can contain as few as
four words) for which the WER values are less reliable. Several
variations of the confidence measure are shown, illustrating the
importance of each stage in the processing of the raw per-frame
entropy. The first row, ‘raw’, refers to the measure derived from
a simple averaging of unprocessed frame entropies. The second

2Note that a segment containing few words can receive an artificially
reduced WER if a marking algorithm based only upon dynamic program-
ming is used.
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Figure 4: WER for each segment plotted against segment entropy
value. Points are weighted by words per segment (top) or decod-
ing time (bottom).

row, ‘-transitions’, shows how the correlation, and hence the re-
liability of the confidence measure, is improved by median fil-
tering to remove the effect of phone transitions. The ‘-silence’
row shows the large effect of excluding the silent frames, which
may be just as well modelled in non-speech as in speech. The
‘-weak’ row shows the small effect of excluding the set of indis-
tinct phones that generally have intermediate values even in clean
speech. The most reliable measure is achieved by combining each
of these techniques.

By setting the confidence threshold to an appropriate value it is
possible to exclude those segments that are expensive to decode
but are nevertheless poorly recognised. In this way decoding time
may be reduced by up to 70% without greatly increasing the over-
all word error rate. This point is illustrated by figure 5 which
shows the overall WER as a function of the computational cost as
the segment confidence threshold is relaxed and a greater number
of segments are decoded. The flattening of the graph clearly indi-
cates the diminishing returns of decoding each successively lower
confidence segment3.

3Note that the minimum WER of 63% is calculated relative to the full



WER vs. S Cost vs. S
simple weighted simple weighted

raw 0.684 0.825 0.665 0.845

-transitions 0.695 0.832 0.670 0.850
-silence 0.799 0.915 0.739 0.915
-weak 0.689 0.831 0.643 0.841

all 0.812 0.923 0.742 0.919

Table 2: The correlation between the entropy measureS and seg-
ment WER and computational cost.

By examining the manner in which the average WERfor recov-
ered segmentsvaries as a greater number of segments are ac-
cepted for decoding, we can obtain some measure of the systems
segmentation and classification performance. The upper line in
figure 6 shows the WERs that are achieved using the acoustic
measure and gradually relaxing the segment acceptance thresh-
old. Compare this upper line to the lower line which simulates
the WERs that could be achieved if the acoustic confidence mea-
sure was a perfect predictor of segment WER. Also plotted are
points corresponding to the use of either all the pre-segmented
evaluation data and just the F0 condition subset. The point to
note here is that the best classification line passes very close to
both these ‘operating points’. If the system had made an inap-
propriate segmentation of the data, mixing poorly modelled and
well modelled speech within individual segments, reaching the F0
operating point would not be possible.
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Figure 5: Overall WER as a function of computational cost as the
segment confidence threshold is relaxed and an increasing number
of segments are decoded.

7. CONCLUSIONS

We have presented a technique that uses a single acoustic con-
fidence measure both to segment continuous audio and also to
predict which segments contain speech that may be regarded as

5186 words that occur in the half hour broadcast not just the 3500 used
for the Hub-4 evaluation.
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Figure 6: WER of the included segments increases steadily as the
confidence threshold is decreased.

recognisable. The technique has two important attributes: First,
it is computationally inexpensive allowing for an overall reduc-
tion in the computational cost of the recognition task. Second,
as the confidence measure is derived directly from the recogni-
tion models the segmentation offered is entirely pragmatic, i.e.
the data is divided into that which is a good fit to the models and
is therefore likely to be recognisable, and that which is not. If
different models are used then different segments will be found,
but they will be the segments that are most likely to be of practi-
cal value. The results presented in this paper are derived from a
single half hour radio broadcast. In order to fully assess the tech-
nique further evaluation is required over a larger, more diverse
set of test data. Additionally, exploiting the durational constraints
of speech and non-speech sounds through the use of a simple,
two-state HMM may make the confidence measure more robust
to non-speech sounds such as music.
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