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ABSTRACT 2. ACOUSTIC CONFIDENCE MEASURE

In this paper we define an acoustic confidence measure ba@&onfldence measure may be defined as a function which quan-
on the estimates of local posterior probabilities produced by #i€s how well a model matches a spoken utterance. Such a mea-
HMM/ANN large vocabulary continuous speech recognition sysSuré may be derived from the output of both the acoustic and
tem. We use this measure to segment continuous audio into {@1guage models, or from either model separately. adaustic
gions where it is and is not appropriate to expend recognition ef;_onflde_nce measure is one_whlch_ls derived exclusively from the
fort. The segmentation is computationally inexpensive and précoustic model. The acoustic confidence measure employed here,
vides reductions in both overall word error rate and decoding (s> 7<), iS the entropy of thé< posterior phone probability es-
time. The technique is evaluated using material from the Broa LmeslgeSq output by a recurrent network averaged over an interval

cast News corpus.

Ne K
1. INTRODUCTION S(ns,ne) = —% Y > Flalx")log (Flalx") . (1)

n=ns k
Most speech recognition tasks to date have required the recogni- . ) .
tion of discrete utterances over which both the speaker and chaffferex is the acoustic data and the intenial= n. —n, +1,
nel characteristics remain constant. It is given that the data supith the start and end frames denotedandn. respectively.
plied to the recogniser is speech and so speech detection amounts . . .
to little more than trimming off leading and trailing silences. Howljn regions of the signal where the models provide a good match

ever, practical speech recognition systems cannot expect to eth.e dtatg,bthe d'.smlbu“ﬁn of plhone EOSthe”Oé? \tng t%{plc‘?]”y tlJe
supplied with such pre-segmented data. Faced with an uns _guna eH val 3 s;mdg (rainp <r)ne; cnassf.n lrjlc a Il? n ru Ionrl ari gw
mented stream of audio, from a radio broadcast for example, t Opy. HOWever, during regions or non-speech, or poorly mod-

first task that must be performed is to decide which regions cor¥: ed speech., several a_It_grnative phone mo_dels may have roughly
tain speech and which regions do not. equal posterior probabilities, leading to a higher valu& ofde-

ally, there should be a clear distinction between the regions of
v&ell modelled speech where the valueSis low, and regions of
orly modelled speech and non-speech where the value is high.
owever, there are several factors that weaken the power of the
Ipjeasure.

Given that we accept the limitations of our speech recogniser,
pragmatic goal is not a segmentation into speech and non-spee
but rather into regions that amecognisablespeech and those
which are not. This second class not only contains non-speech
dio, such as music, but also speech for which the acoustic conglizoyy it is possible for certain models to be well matched to the

tions are such that the data IS not suf_ﬂ_mently well matched by t ta even during periods of non-speech. This is most obviously
models to produce a reliable recognition result. A related mod

based h hd onis d bed in 11 ue for the silence model, but there are other phone models that
ased approach to speech detection is described in [1]. might be closely matched to non-speech sounds - e.g background

. . . iss can be mistaken for a sibilant suchsasConversely there
If this segmentation can be provided through the use of a purélye certainveakphones that are often ambiguous even in clean,

acoustic confidence measure which is not dependent upon giy,eryise well-modelled speech. For these experiments we com-
particular decoding hypotheses (see section 2), it may be comyaq a list of weak phones containings, dx, uh, axr andax By

putationally inexpensive and computed before recognition is a, .,ding frames which have the highest posterior probability of

tempted. A segmentation system of this kind concentrates recogsy, of these phone classes, the power of the confidence measure
nition effort exclusively upon regions where it may be usefully apg41, pe increased.

plied. The remainder of the paper describes the formation and ap-

plication of such a confidence measure derived from local post&econdly, due to the piecewise stationary assumption, the per-

rior probability estimates produced by theBoT Hidden Markov  frame entropy is inherently very noisy. Even in clean speech

Model/Artificial Neural Network (HMM/ANN) large vocabulary - spikes occur in the entropy profile at regular intervals correspond-

continuous speech recognition (LVCSR) system [2]. ing to predictably poorly modelled phone transitions. These spikes
can easily obscure the underlying trends (see figure 1). However,

This work was supported by ESPRIT Long Term Research Proje®y applying a median filter with a sufficiently short window (50—
20077 (SPRACH) and by an EPSRC studentship. 80ms) many of these spikes can be removed reducing the value of




S during the speech regions relative to that during the non-spee@ite. prior to any entropy calculations) in two second windows
regions. on either side of a putative segmentation point. The segmentation
point was then adjusted so as to maximise the distance between
the distributions.

4. CLASSIFICATION

Classification of the segments was based on the same acoustic
confidence measure employed for the segmentation: The entropy
over the phone posteriors was calculated for each frame of the
segment and 5 frame(80ms) median smoothing was applied to
reduce the influence of phone transitions. Frames hypothesised as
) o silence or as any of the weak phones were removed and the mean
Fug_ure 1: Per-framg e_ntropy for thg phrase “Americain plack ancbntropy value for the remaining frames was calculated. Low val-
white”. Although this is clean studio speech entropy spikes occyjes were taken to indicate well modelled speech worthy of de-
at each of the phone transitions. coding and higher values to indicate poorly modelled speech and
non-speech. A threshold was set to decide which segments to ex-
cise. A summary of the complete system is given in figure 3.

3. SEGMENTATION

Figure 2 plots values of two versions of the entropy measure ov Unsegmented audio
a 10 minute segment of a radio broadcast. The values were ¢
culated by removing silence and the weak phones and averagi
over a 40 frames 600ms) window. It can be seen that even af-
ter this averaging there remain rapid fluctuation. These were fi
tered out prior to segmentation using a further median smoothir
stage. This final smoothing, shown in the lower panel, was pe
formed over an approximately 10 second window. Segmentatic
was performed by locating local maxima or minima in the dif-
ference function and declaring these as segmentation points wh
their absolute value was over an empirical threshold.
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Figure 2: The raw entropy measure (top) and the smoothed and ~ T19ure 3: A summary of the segmentation system.

segmented entropy measure (bottom) for a 10 minute extract from
a broadcast news program.

5. EXPERIMENTS

Although this procedure is able to provide segmentation pointg 30 minute radio shoiwas selected from the the 1996 ARPA

the heavy smoothing of the entropy function causes these point$oadcast News (BN) corpus [4] to evaluate the system. Can-
to be positioned to within a few seconds of their correct locatiorgjgate segments were obtained for the entire show, i.e. including
Therefore, the locations must be ‘fine tuned’ before they can bgsmmercial breaks not used in the Hub-4 evaluation, and decoded

used. This was accomplished using the KL2 distance metric, @ing the A/BoT HMM/ANN LVCSR system. Word error rates
described by Siegler et al. [3]: Means and variances were cal-

culated for the distribution of the front-end processed acoustics *ABC Nightline: Episode 05/23/96.




(WERSs) were calculated by aligning the decoded word sequenc
against a Viterbi alignment of the reference transcrigtionhe
classification portion of the system was also evaluated using tl 4
‘focus condition’ segmentation supplied with the BN corpus foi
comparison. 1208

The acoustic model used for the experiments was composed  0f : . SOPSA RO M O P .
two recurrent networks with 604 context-dependent phone class ’ ’
(plus silence). One network estimated the phone posterior pro¥ f
ability distribution for each frame given a sequence of 12th or
der perceptual linear prediction (PLP) features. The other ne ®r
work performed the same distribution estimation with feature
presented in reverse order (since recurrent networks are time-as 41
The two probability estimates were averaged in the log domai
The model was trained on BN data drawn solely from the FO cor  2°
dition. A 65k word backed-off trigram language model trained ot
132 million words was used for the decodings.
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6. RESULTS AND DISCUSSION

Table 1 shows the recognition performance for the supplied focu
condition segmentation. The table also shows the number of woi
in each condition, and the percentage this forms of the total nun
ber of words in the show (note that this includes the commercic | . o 5 N 4 .

breaks). o et

120+

WER
3
T

Condition

|| Words | % Total [| WER

FO - prepared

638

12.3

17.9

F1 - spontaneous

1342

25.9

33.4

F2 - low fidelity

813

15.7

84.4

F3 - music

162

3.1

30.9

F4 - noise

187

3.6

51.4

FX - mixed

358

6.9

81.1

Al [ 3500 |

67.5

[ 485

60

40

|
18 2 22 2.4 26 28 3 3.2
Entropy

Table 1: Results using pre-segmented evaluation data. Figure 4: WER for each segment plotted against segment entropy

value. Points are weighted by words per segment (top) or decod-
) ing time (bottom).

Figure 4 shows the average WER for each of the 81 segments
returned by the automatic segmentation procedure. The area of
shading around each point in the upper panel is proportional tew, *-transitions’, shows how the correlation, and hence the re-
the number of words in that segment whereas it is proportional fability of the confidence measure, is improved by median fil-
the time taken to decode the segment in the lower panel. It cagring to remove the effect of phone transitions. The *-silence’
be seen that there is a high degree of correlation between WERw shows the large effect of excluding the silent frames, which
and the confidence value for the segments and also that althouglay be just as well modelled in non-speech as in speech. The
many of the ‘poor’ segments contain few words, they constitute aweak’ row shows the small effect of excluding the set of indis-
large proportion of the total decoding time. tinct phones that generally have intermediate values even in clean

) ] ) speech. The most reliable measure is achieved by combining each
The correlations between a segment’s confidence estimate and gisthese techniques.

WER (and decoding time) are detailed in table 2. Two measures

are shown; a simple correlation, and a correlation weighted bBy setting the confidence threshold to an appropriate value it is
the number of words in the segment. This weighting reduces thmssible to exclude those segments that are expensive to decode
contribution of very short segments (which can contain as few dsut are nevertheless poorly recognised. In this way decoding time
four words) for which the WER values are less reliable. Severahay be reduced by up to 70% without greatly increasing the over-
variations of the confidence measure are shown, illustrating tfel word error rate. This point is illustrated by figure 5 which
importance of each stage in the processing of the raw per-fransdows the overall WER as a function of the computational cost as
entropy. The first row, ‘raw’, refers to the measure derived fromhe segment confidence threshold is relaxed and a greater number
a simple averaging of unprocessed frame entropies. The secasicdsegments are decoded. The flattening of the graph clearly indi-
cates the diminishing returns of decoding each successively lower
2Note that a segment containing few words can receive an artificiallgonfidence segméht

reduced WER if a marking algorithm based only upon dynamic program-
ming is used.

3Note that the minimum WER of 63% is calculated relative to the full



WERVvs. S Costvs. S 701
simple | weighted || simple | weighted
raw | 0.684 ] 0.825 || 0.665 | 0.845 ool , ._‘../
-transitions || 0.695 0.832 0.670 0.850 :~:°-"'
-silence 0.799 0.915 0.739 0.915 ,;f ’
-weak 0.689 0.831 0.643 0.841 sof alleval g "
all [ 0812 | 0923 || 0.742 | 00919 5 e
b
Table 2: The correlation between the entropy meastiend seg- UEJW - 4
ment WER and computational cost. - .-;7"
30 .
By examining the manner in which the average WiBRrecov- e . .).c’
ered segmentsaries as a greater number of segments are a ‘ Fo

cepted for decoding, we can obtain some measure of the syste ,, i i i i i i i i i i
segmentation and classification performance. The upper line " Yoftotal words accepted
figure 6 shows the WERSs that are achieved using the acoustic

measure and gradually relaxing the segment acceptance threfyyre 6: WER of the included segments increases steadily as the
old. Compare this upper line to the lower line which simulategqnfidence threshold is decreased.

the WERSs that could be achieved if the acoustic confidence mea-

sure was a perfect predictor of segment WER. Also plotted are

points corresponding to the use of either all the pre-segmentegcognisable. The technique has two important attributes: First,
evaluation data and just the FO condition subset. The point {pis computationally inexpensive allowing for an overall reduc-

note here is that the best classification line passes very closetign in the computational cost of the recognition task. Second,
both these ‘operating points’. If the system had made an inags the confidence measure is derived directly from the recogni-
propriate segmentation of the data, mixing poorly modelled angbn models the segmentation offered is entirely pragmatic, i.e.
well modelled speech within individual segments, reaching the Fhe data is divided into that which is a good fit to the models and

operating point would not be possible. is therefore likely to be recognisable, and that which is not. If
different models are used then different segments will be found,
1001 : : : but they will be the segments that are most likely to be of practi-
- cal value. The results presented in this paper are derived from a
o5 single half hour radio broadcast. In order to fully assess the tech-
nique further evaluation is required over a larger, more diverse
o+ set of test data. Additionally, exploiting the durational constraints
\ of speech and non-speech sounds through the use of a simple,
85l ~ ~ , two-state HMM may make the confidence measure more robust

to non-speech sounds such as music.
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