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ABSTRACT from the residual signal reconstructed from the RPE-LTP param-
eters, by comparing them to corresponding cepstra derived from

Speech coding affects speech recognition performance, with ramcoded and unquantized versions of these signals.
ognition accuracy deteriorating as the coded bit rate decreas
Virtually all systems that recognize coded speech reconstruct t
speech waveform from the coded parameters, and then perfo
recognition (after possible noise and/or channel compensatio il th b i i o . bining th
using conventional techniques. In this paper we compare the re ° ;N' use these o sefrva lons of%w eus 'E com_lnlnlg ne clep-
ognition accuracy of coded speech obtained by reconstructing tReS representations of the LPC filter and the residual signal to
speech waveform with the speech recognition accuracy obtain8y"'Mz€ speech recognition error rate.
when using cepstral features derived from the coding parametehs.Section 2 we discuss briefly the characteristics of the GSM
We focus our efforts on speech that has been coded using the ¢8edec. We discuss the effect of GSM coding and quantization on
kbps full-rate GSM codec, a Regular Pulse Excited Long Termspeech on cepstral features in Section 3, and we present recogni-
Prediction (RPE-LTP) codec. The GSM codec develops separaten results employing those features. In Section 4 we discuss
representations for the linear prediction (LPC) filter and thenethods for recombining the coefficients extracted from these
residual signal components of the coded speech. We measure ¢eestral features in order to minimize the recognition error rate
effects of quantization and coding on the accuracy with whicbf GSM-coded speech signals.
these parameters are represented, and present two different meth-
ods for recombining them for speech recognition purposes. We 2. THE FULL-RATE
observe that by selectively combining the cepstral streams repre- GSM SPEECH CODEC
senting the LPC parameters and the residual signal it is possible
to obtain recognition accuracy directly from the coded paramd-he full-rate GSM speech codec [2] is a lossy speech coding-
ters that equals or exceeds the recognition accuracy obtaindeicoding algorithm based on a regular pulse excited long term

e will demonstrate that the effects of quantization and coding
ect the individual coefficients cepstral representations of the
C filter and residual excitation signal in differing amounts.

from the reconstructed waveforms. prediction scheme [5]. GSM converts 13-hit digital signals sam-
pled at 8 kHz into blocks of 260 bits for every 160 original sam-
1. INTRODUCTION ples. Hence, the GSM coding algorithm produces a gross bit rate

) - ) of 13.0 kbps, although the actual GSM transmitted bit rate is
Speech coding affects speech recognition accuracy, with Wogfyher due to added error recovery and packet information. The
accuracy deteriorating as the coded bit rate decreases [4, 6]. DRSE_| TP coding algorithm is a member of the linear predictive

to the increase of speech communication applications employigha|ysis-by-synthesis (LPAS) family of coding algorithms [4].
coding algorithms and the interaction of these speech communi-

cations systems with automatic speech recognition application$ is the case with all LPAS algorithms, the GSM codec repre-
coding of speech can become a significant problem that limits ti§€nts the speech signal using two sets of parameters: information
performance of such applications [3, 6, 7]. Several approachagout the LPC filter (in the form of quantized log area ratios, or
that deal with this problem have been proposed. (3, 7)). Q-LARS) and !nformatlon about the coded residual signal (_|n the
These approaches involve the regeneration of the speech sigtdm of quantized RPE-LTP parameters). The compression of
prior to applying compensation and adaptation techniques. T|§l@e reS|duaI.S|gnaI_|s a Iossy_ process WhICh |ntrod_uces dl_stortlc_Jn
degradation in recognition accuracy is greater when the speeldfo the residual signal. During decoding, the residual signal is
used to train the recognizer had not undergone the identical cd#fst reconstructed from the RPE-LTP information, and then fil-
ing processife., “mismatched conditions”). Nevertheless, usingtered by the short-term synthesis filter, whose parameters are
similarly-coded speech for both training and testing reduces bélgrived from the received LARs.

does not eliminate the degradation in recognition accuracy Comigure 1 shows a schematic representation of a general analysis-
pared to the accuracy obtained with uncoded speech [7]. by-synthesis coder. In the specific case of the full-rate GSM
Using the 13-kbps full-rate GSM codec, we consider in thi§oder the block that minimizes the difference between the actual
paper the effects of speech coding on parameter representatigfidual signal and the reconstructed residual signal computes
accuracy and on speech recognition accuracy. GSM is a Regulg quantized RPE-LTP representation of this difference.
Pulse Excited Long Term Prediction (RPE-LTP) coding procesgesides the lossy representation of the residual signal that this
[2]. We assume that the speech recognition system has accesd/@®rithm introduces in the RPE-LTP section, quantization of the
the transmitted GSM parameters of the coded speech signal. WeR coefficients plays a role in the degradation observed in
analyze the effects of lossy compression and quantization on theeech that has undergone the GSM coding process.

cepstra derived from quantized Log Area Ratios (LAR), and
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Figure 2: Normalized mean square error (NMSE) of the
cepstra of GSM-reconstructed speech waveforms using the
Figure 1: A simplified block diagram of a typical analysis by cepstra of the original waveforms as the standard.
synthesis coder. Normalization is with respect to the average energy of each
cepstral coefficient.

3. THE IMPACT OF PARAMETER QUAN- The NMSE of cepstral coefficients developed from the LPC anal-
TIZATION AND CODING ON CEPSTRA ysis of GSM-encoded speech signals are plotted in Figure 3, in

the same fashion as in Figure 2. The general effect of GSM cod-
In this section, we describe the procedure used to develop cefisg for these coefficients appears to be similar to that of the
tral features for speech recognition from signals and parametelMSE of the coefficients representing the original waveform in
developed by GSM coding of speech. We consider three setstbfat the NMSE generally increases as the coefficient order
cepstral vectors: vectors derived directly from the reconstructddcreases.
GSM speech signal, vectors derived from the log area ratios rep-
resenting the LPC filter, and vectors derived from the residual w 0.18[

; - %)

signal. We compare these cepstra with the uncoded and unquars 0.16
tized versions of the signals and parameters listed above to deters
mine the extent to which coding and quantization affects _8 0.141
representation accuracy. Finally, we compare the accuracy ®

obtained using these various features in speech recognition sys§0'12_
tems. Z0.101
3.1. Recognition using Reconstructed 0.08
GSM Speech 0.061
Most recognition systems operate directly on speech waveforms 0-040 2 ;1 é é 1'0 1'2
that are decoded from GSM parameters in conventional fashion. Cepstral Coefficient

The differences between the GSM-decoded signal and the origi-

nal speech waveform can cause a degradation in speech recogng. oo the quantized LARs of GSM-encoded speech

tion. GS'\:I(;:Od'gg gﬁeCtS trr]u? vgl_;lfous (t:epstral t(_:oeﬁlflzleg_ts use; 10 aveforms with respect to the corresponding cepstra of the
represent decoded speech in different proportions. In Figure Weoriginal waveforms (without quantization).

plot the normalized mean square error (NMSE) between corre-
sponding coefficients of the original and GSM-decoded speech
cepstral vectors (normalized by dividing the mean square err@3.3. Deriving Cepstra from the Residual

by the average squared value of a given coefficient). If we con- Signal

sider the effects of distortion to be an additive noise signal, the

NMSE would be roughly proportional to the inverse of the sigCepstral coefficients can also be generated from the RPE-LTP

nal-to-noise ratio (SNR). As can be seen in Figure 2, the NMSBarameters that represent the residual excitation signal. The RPE-
introduced by GSM coding generally increases as the coefficiebf P coefficients are obtained from conventional cepstral analysis

Figure 3: Normalized mean square error of cepstra derived

index increases. of time functions. While the residual signal is generally assumed
to contain primarily information that is less relevant to the
3.2. Deriving Cepstra from the LPC Log speaker independent speech recognition task such as pitch, peri-
Area Ratio Parameters odicity, and glottal waveform information [8]. However, because

only an eighth-order LPC analysis is used in LPC coding, the
Cepstral coefficients can also be obtained from the quantized logsidual signal still carries information that is useful for speech
area ratio (LAR) parameters that are developed in the course m@cognition.

GSM coding. The LAR parameters are transformed into the COlje generated cepstral coefficients from the residual obtained

responding LPC coefficients, from which cepstral coefficient ] . i
are generated directly using the approach described in [1]. TErom the RPE-LTP parameters of the GSM codex, (he recon

ye e - "Weucted GSM residual) and compared their values to the corre-
GSM standard specifies that 8 coefficients are generated usmg?ﬂbnding coefficients %or the ori%inal uncoded speech signal
eighth-order LPC analysis. ;

Figure 4 shows the NMSE of the cepstral coefficients represent-
ing GSM-encoded speech, with respect to the corresponding



coefficients of the original uncoded speech. In contrast to the
NMSE of the reconstructed waveform and the Q-LARs shown
in Figs. 2 and 3, the NMSE of the cepstral coefficients represent-
ing the residual signal tends decreaseas the coefficient order -
increases. We also note that the magnitude of the NMSE of the | MFCC coefficents from | 89.7% | 45.0%
residual is much greater than that of the cepstra of both the Q | ©riginal waveform
LAR h t h form. -

s and the reconstructed speech waveform MECC coefficients from | 87.7% 41.5%
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Figure 4. Normalized mean square error of cepstra derived

GSM-RESIDUAL CEP- | 67.5% 3.9%

from the residual signal of GSM-encoded speech STRA
waveforms with respect to the corresponding cepstra of the
original waveforms (without quantization). Table 1: Recognition accuracy obtained for speech

without and without GSM encoding, and with and without
additive noise, using cepstral features derived from the

4. EFFECT OF GSM CODING ON waveform and from the GSM parameters directly. See text.
SPEECH RECOGNITION ACCURACY 4.2. Recognition Accuracy using Features

In this section we describe the results of a series of speech rec-  Derjved from GSM parameters

ognition experiments using cepstral features derived from the

reconstructed waveforms and from the GSM parameters therfRows 4 through 6 of Table 1 compare recognition accuracies
selves. Recognition experiments were performed using @btained using cepstra generated from unquantized and quan-
reduced-bandwidth and downsampled version of the speakiéfed LARs, and from the original residual signal and the GSM-
independent component of the Resource Management RM1 cdestored residual signal. The accuracy of this pair of features
pus [9] under clean and noisy conditions. In all cases the speetg#veals the existence of information relevant to recognition in the
signal was low-pass filtered to 3.5 kHz and downsampled to @sidual signal. These results indicate that recognition accuracy
kHz. For noisy conditions, stationary additive lowpass colore@btained from features derived from the LAR and Q-LAR
noise was added to yield a resulting SNR of approximately 1Barameters is almost as good as recognition accuracy obtained
dB. The colored noise was generated by filtering white gaussidfpm the reconstructed waveforms themselves. Features derived
noise through a simple 2-pole filter with a resonance of approxfrom the residual signal are somewhat less effective.

mately 650 Hz and a half-power bandwidth of approximately

400 Hz. The acoustic models employed consisted of a set ob. COMBINING Q-LAR CEPSTRA WITH

senonically-tied continuous density HMMs, modeled by approx- GSM-RESIDUAL CEPSTRA

imately 2500 senones and 2 gaussians per mixture. ) ) .
Since in traditional LPC theory, reconstructed speech waveforms

4.1. Recognition Accuracy using Original are obtained by the convolution of the impulse response of the

LPC filter with the residual signal, the cepstrum of the speech
and Reconstructed SpeeCh Waveforms waveform can be estimated by adding the cepstra of the LPC fil-

Table 1 compares speech recognition accuracy obtained usit®j and of the residual. As discussed in Section 3, however, the
various cepstral feature sets, with and without the additive noisBlMSE of these two sets of cepstral coefficients behave differ-
For each feature set, acoustic models were trained with featuregtly. In this section we show that we can improve recognition
used to test the system, and without the additive colored noisgccuracy byselectivelycombining Q-LAR cepstral coefficients
Results in the first three rows of Table 1 compare the recognitiosith cepstral coefficients derived from the GSM-restored resid-
accuracy using Mel-frequency cepstral coefficients (MFCCsbyal signal.

generated from the original speech without GSM coding (Ro
1), and GSM-processed speech (Rows 2 and 3). Training
“mismatched” in Row 2 in that the system was trained usin

Wve consider two ways of combining the cepstra representing the
{C filter and the residual filter: (1) direct addition of the two
Qets of cepstra (which indeed corresponds to convolving the
. . X ?Fﬁpulse response of the LPC filter with the residual signal), and
ing for the results in Row 3. The effect of GSM coding on recogray gssembling 43-dimensional composite cepstral vector by
nition error rate was relatively modest for this dataset: the ermbncatenating a subset of the cepstral coefficients representing
rate increased by about 20% for clean speech and 6% for noigy, | pc filter with a subset of the cepstral coefficients represent-
speech W'th mismatched training, and most Qf thg Qegradat| g the residual waveform. We implemented the latter procedure
was eliminated when GSM coding was used in training as wefly’ compining the first coefficients of the quantized-LAR Cep-

as in testing. stra and the last 1Binus i coefficients of the GSM-restored



residual cepstra. These subsets of coefficients were chosen 6. DISCUSSION AND SUMMARY

because the NMSE of the residual cepstra is smaller for the ) ) i
higher order coefficients, as shown in Figure 4. In further experi-ne degrading effect of GSM coding on speech recognition accu-
ments we confirmed that good recognition accuracy for the cofCy has been associated with the distortion introduced to ceps-
catenated vector could be obtained provided using othéﬁa' representations of the log area ratios and the restored res_ldual
combinations of specific coefficient, provided that the first tw§ignal, after quantization and lossy coding. Of the representations
cepstral coefficients from the residual signal were exclude@f GSM parameters considered, we observed greatest normalized
(These coefficients exhibit the greatest NMSE.) mean-square error for tieghestorder cepstral coefficients rep-

B resenting the LARs (and hence the LPC filter), and fotaive
Table 2 compares recognition results for a set of values of tgtorder cepstral coefficients representing the residual excitation
parametel, which we refer to as “cutoff values”, ranging from gignal. In order to obtain best speech recognition accuracy, it is
i=5 t0i=10. We note that in this table a cutoff of zero is equivanecessary to concatenate lower-order coefficients that represent
lent to using a 13-element GSM-residual cepstral vector; a cutqffe | pC filter with higher-order coefficients representing the
of 13 is equivalent to using Q-LAR cepstra. From Table 2 ifesjqual signal. Speech recognition accuracy for the NIST RM1
appears that best results are obtained when approximately 8 cgRrabase was greater when the concatenated feature vector
coefficients representing the residual signal. features were extracted from speech waveforms reconstructed by

the GSM decoder.
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