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ABSTRACT

For large vocabulary recognition system, as well as for flexible
vocabulary applications using hidden Markov model(HMM),
parameter smoothing and tying have been used to increase the
reliability of models. This paper describes bottom-up and top-
down clustering techniques for state level tying. This paper also
describes a method of applying parameter smoothing to the
clustered states and covariance matrix of semicontinuous
hidden Markov model(SCHMM). We present a new parameter
smoothing method and apply it to the distribution of discrete
hidden Markov model(DHMM) in the training procedure. A
new model composition method for unseen triphone modeling
in bottom-up clustering is also proposed and compared with
traditional context-independent model backing-off method.

1. INTRODUCTION

It is necessary to use subword unit modeling for large
vocabulary recognition system, as well as for flexible
vocabulary applications. Context dependent phones, like
triphones, are generally used for taking into account the co-
articulation effect. As the number of units becomes larger by
including more context dependencies, the amount of data
available for each unit decreases and the model estimates
become less reliable. Since we will never have sufficient
training data to model the large amount of parameters, several
techniques to increase the reliability of models were used.

Several solutions which have been proposed to create robust
models can be summarized into two main classes, which are
parameter smoothing and tying. Parameter smoothing methods
include co-occurrence smoothing[1] based on joint probabilities
of pairs of codebook symbols, interpolation of detailed context
dependent models with less detailed but better trained models,
and covariance matrix smoothing[2].

Parameter tying[3][4] by clustering similar units or similar
distributions is also widely used for creating reliable units.
Although any subsets of HMM parameters can be tied,
parameter tying is generally applied in two levels which are
state level and mixture level. Traditional method of dealing
with parameter tying tend to be model based, but since model
based approach cannot treat the left and right context
independently, state based tying is preferred.

For state level tying, bottom-up and top-down clustering
method were used. Although, bottom-up clustering approach is
more flexible in considering all possible configurations for seen
context, for unseen context modeling, top-down clustering
method using decision tree is more appropriate. In bottom-up
clustering method, context independent models are used to back
off unseen context, which degrades system performance. In
mixture level tying, the SCHMM which can be considered as a
special form of continuous mixture hidden Markov model with
the continuous output probability density functions sharing in a
mixture Gaussian density codebook is generally used.

The organization of this paper is as follows. Section 2 describes
parameter smoothing methods. Section 3 explains bottom-up
and top-down state clustering. Finally, in Section 4,
experiments and experimental results are described.

2.  SMOOTHING

2.1 Training Procedure

Training procedure is composed of two stages. In the first stage,
52 initial context-independent DHMM phone models from
hand-labeled data are created. These phone models are used to
initialize context-independent DHMM and context-dependent
models are estimated based on context-independent ones.

Bottom-up and top-down clustering methods are applied to the
context dependent DHMM for reducing the number of states.
The second stage is to train 4-codebook context-independent
SCHMM using mapping table and context-independent DHMM
in the first stage.

2.2 Senone Smoothing

The co-occurrence smoothing method(CSM)[1] is the method
to smooth distributions by calculating co-occurrence probability
which represents the similarity measure among all codewords.

When we apply the CSM to the senones[3], that is, shared-
distributions, the co-occurrence probability of codeword i given
codeword j is shown in Eq (1). This probability represent the
similarity between codeword probability i and j.

In Eq(1), p(k|p,d) is the output probability of codeword k for
distribution d in phoneme model p and  Wd represent the



probability of each distribution, that is, the reliability of  each
distributions.
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where NS is the number of senone, and NC is the number of
codeword.

We used the occupation counts during training as Wd. For each
distribution, we calculate smoothed distribution by multiplying
smoothing matrix. Finally, we interpolate original distribution
and smoothed distribution.

2.3 Clustered Co-occurrence Smoothing
Method

Traditionally, CSM has overall one smoothing matrix or
smoothing matrix per phoneme. But this has a disadvantage of
over-smoothing.

We propose clustered co-occurrence smoothing method and
applied it to the distributions of DHMM. The proposed method
has four steps. First we cluster similar states. Second, For each
cluster of distributions, one smoothing matrix is calculated. The
co-occurrence probability of mth cluster is shown in Eq (2).
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where N is the number of cluster, and ND(m) is the number of
distributions which belongs to the mth cluster.

Third, For each distribution, we determine to which cluster it
belongs. And then calculate smoothed distribution by
multiplying smoothing matrix. Finally, we interpolate original
distribution and smoothed distribution.

2.4 Covariance Smoothing

We used covariance smoothing[2] to obtain more powerful
acoustic models. A Gaussian density with a very sharp peak
gives very low likelihood scores to feature points which are
only slightly deviated from the mean and hence the model
robustness is low.

Let there be M components in a mixture density with the
covariance matrices Ci , i = 1,2,…,M. The relative sharpness of
the i th component Ri is calculated as
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Let the covariance matrix of the unimodal density be C, then a
smoothing is performed on Ci if Ri is above a threshold.

The smoothing is defined as a linear interpolation of the
detailed estimate Ci and the robust estimate C. The smoothed
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where ¯ °≤ ≤λ  is the interpolation parameter.

2.5 Incorporation Smoothing into Training
Procedure

We applied distribution smoothing to the distributions of
context-independent initial DHMM, context-dependent DHMM
and context-dependent SCHMM in the training procedure. We
also applied covariance smoothing to the covariances of
SCHMM.

3. TYING

3.1 Bottom-up Clustering

We applied bottom-up[3] and top-down[4] clustering in state
level tying. For both cases, we used the entropy reduction
weighted by occurrence counts during training as the criterion
for clustering. Eq (5) represents the criterion used.
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where P is the summation of the count entries in probability
distribution A and similarly, Q is the summation of the
occurrence counts in B.

We apply four constraints in the bottom-up clustering for
efficient and robust clustering. First, we prohibit HMM output
distributions of different phones from being clustered. Second,
we allow HMM output distributions to be merged only if they
are associated with the same k-th Markov state in the model
topology. Third, the central state of an allophone is tied to the
central state of all the other allophones of the same phone.
Fourth, we allow HMM output distributions to be merged only
if occurrence counts  during training is below the threshold.

In bottom-up clustering, the common method of the handling
unseen triphone is backing-off to less specific models like
monophones. For example, if we assume that the unseen
triphone is g_a_n, by Backing-off method, it is replaced by
monophone, $_a_$. Recently, unseen triphone modeling using
diphone has been also proposed[5].



we present modified model composition method(MMCM) . In
this method, each state of unseen triphone is tied with the
similar state among trained states. Similarity is measured just
simply comparing left and right context. For modeling the left
state of unseen triphone, first, we estimate monophones,
diphones, and  triphones and then cluster monophones into the
phonologically meaningful classes of phones. Among trained
triphones, we select triphones which have the same left-context
and belong to the same class in right-context with unseen
triphone. Then we find the triphone which has the maximum
training token among the selected triphones. The left-state of
the unseen triphone is tied with the left-state of selected
triphone. Right-state can be modeled similarly.

3.2 Top-down Clustering

By applying first three constraints of bottom-up clustering, we
build a decision tree for each Markov states of each base phone
except center state. Our system has 52 phonemes. When there
are three states for each phonetic HMM, that makes 104 trees in
total.

We classified Korean vowels and consonants into 30 classes
according to the horizontal and vertical places of articulations.
The linguistic simple questions querying about the left or right
context of a triphone and composite questions to alleviate the
data fragmentation problem are formed. First, we grow simple
tree having about 5 to 10 leaves and then, combine the leaves
into two groups and calculate the total entropy. Among all
combination, the combinations which has minimal total entropy
was chosen.

We used the information which was obtained from bottom-up
clustering. The agglomerative approach is more flexible in
considering all possible configurations for seen triphones. So
we first performed bottom-up clustering to the distributions.
Then in the pruning stage of top-down clustering, we used the
number of clusters from bottom-up clustering as stopping
criterion. In the growing stage, as was bottom-up clustering, we
did not stop growing until a minimal entropy reduction failed.
Then in the pruning stage, we pruned the merges that had the
most delta entropy until the number of clusters from bottom-up
clustering was left, which is expected to the proper number of
cluster and the clusters are expected to be well trained by the
given training corpus.

4. EXPERIMENTAL RESULTS

4.1 Experimental Conditions

Input speech for training and test is sampled at 16kHz. It is
initially pre-emphasized (1-0.953z-1) and grouped into frames of
320 samples with a shift of 160 samples. For each frame, a
Hamming window was applied and then 12-dimensional LPC-
derived cepstral vector was computed. The cepstrum vector and
its first and second time derivatives are used as features. The

first time derivative vector of cepstrum was computed with time
difference of 20msec and 40msec. Thus each speech frame was
represented by a vector of 48 features. A set of 52 phonemes in
Korean language is used as a base phoneme set. Each subword
unit is modeled by a three-state left-to-right HMM. Each state is
characterized by a 4-mixture Gaussian state observation density.
Training is done with Baum-Welch algorithm. Class-based
bigram and A* N-best search algorithm are used as a language
model and search algorithm, respectively.

We selected 6700 phonetically balanced words set which covers
all phonological events in the noun words from general Korean
dictionary to implement Korean flexible isolated word
recognition system. That is, this set includes all the context-
dependent phones in the noun words and has minimum words.
We use only noun words for training, because Korean verbs and
adjectives have the same ending sound for almost all words.

For training and test, 40000 utterances which are spoken by 240
males and 160 females were used. So, the system is gender-
independent. For training purpose, we used 38000 utterances
spoken by 228 males and 152 females. In order to test, as in-
vocabulary test set, 2000 utterances spoken by 12 males and 8
females were used. As out-of vocabulary set, we used 768
words Korean company name set and 335 words Korean name
set.

4.2 Experimental Results

Table 1 shows the test results of out-of-vocabulary test set
without unseen triphone. We used 768 Korean company names
as test set. In table 1, we clustered distributions into 1000
clusters. We used 1000 clusters to reduce memory requirement
as much as possible for practical reason while maintaining
system performance. When we used 1000 senones, the memory
requirement is approximately 2 Mbyte.

Triphone Bottom-up Top-down

% Error 6.13 6.00 6.88
Table 1: Error rate of out-of vocabulary set without unseen
triphone

Since we used the cluster number of bottom-up clustering as the
stopping criterion of pruning of top-down clustering, the
number of senones of bottom-up and top-down clustering is
almost same. Table 1 shows  the results of bottom-up and top-
down clustering when we used senone smoothing.

The effect of smoothing on the covariance matrices is
investigated. The covariance matrices are smoothed by
comparing the sharpness ratio Ri with several threshold, such as
0.1,1,10,100. And for each threshold, those above the threshold
are smoothed with the several interpolating parameters, λ, such
as 0.2, 0.5, 0.7, 1.0. λ=1.0 means no covariance smoothing.
Figure 1 shows the results of covariance smoothing when we
apply it to the covariance matrix of SCHMM.
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Figure 1: Results of covariance smoothing

Table 2 shows the test results of in-vocabulary test set. For in-
vocabulary test, we used 20 speech files with a vocabulary of
1000 words.

Triphone Bottom-up Top-down

% Error 12.60 12.15 13.10
Table 2: Error rate of in-vocabulary set

In table 2, we also clustered distributions into 1000 clusters. We
compared the performance of floor method and CSM for the
distributions of SCHMM. Table 3 shows the results.

  
Senone Smoothing

Floor Method CSM

%Error 13.15 12.15
Table 3: Results of senone smoothing

We used 335 Korean names as another out-of-vocabulary set
with unseen triphone. The total number of unseen triphones in
the test set is 244. So 0.728 unseen triphone per word was
occurred. Table 4. shows the results.

Bottom-up
Triphone

Backoff MMCM
Top-down

% error 15.75 15.25 14.50 13.56
Table 4: Error rate of out-of vocabulary set with unseen
triphone

Results of table 1,2 and 4 show that MMCM outperforms the
traditional context-independent backing-off method and in case
of out-of-vocabulary with unseen triphone, the top-down
method outperforms the bottom-up method.

5. CONCLUSION

We applied state level tying by using bottom-up clustering and
top-down clustering. We also applied co-occurrence smoothing

method to the clustered states and variance smoothing to the
covariance matrix of SCHMM. In senone smoothing,  we
obtained 7.6% error reduction rate by using CSM compared
with uniform smoothing. And  48% error reduction rate was
obtained by covariance smoothing .

We have proposed clustered co-occurrence smoothing method
and by applying it to the distributions of DHMM, more accurate
state clustering in the training procedure can be performed. And
we also proposed a new model composition method for
modeling of unseen triphone and obtained 5% error reduction
rate compared with conventional context-independent phone
baking-off method.
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